AC AXICAN OIL AXICHEM Pty Ltd

Chemwatch: 4888-71 Version No: 5.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: '

Issue Date: 23/12/2022 Print Date: 16/06/2023 L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier Product name AC AXICAN OIL Chemical Name Not Applicable Synonyms Not Available Chemical formula Not Applicable

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Enhances the performance of agricultural and horticultural sprays by increasing droplet deposition and retention.

Details of the manufacturer or supplier of the safety data sheet

Not Available

Registered company name	AXICHEM Pty Ltd
Address	9 Palings Court Nerang QLD 4211 Australia
Telephone	07 5596 1736
Fax	Not Available
Website	www.axichem.com.au
Email	msds@axichem.com.au

Emergency telephone number

Other means of

identification

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE (24/7)
Emergency telephone numbers	+61 1800 951 288
Other emergency telephone numbers	+61 3 9573 3188

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable
Classification [1]	Serious Eye Damage/Eye Irritation Category 2B
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)	Not Applicable
Signal word	Warning

Hazard statement(s)

H320	Causes eye irritation.

Issue Date: 23/12/2022 Print Date: 16/06/2023

Precautionary statement(s) Prevention

P264	Wash all exposed external body areas thoroughly after handling.
------	---

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313	If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
120962-03-0	>60	canola oil
Legend:	Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from C&L * EU IOELVs available	• • • • • • • • • • • • • • • • • • • •

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- ► Water spray or fog.
- ► Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Chemwatch: 4888-71 Version No: 5.1

Page 3 of 15 **AC AXICAN OIL**

Issue Date: 23/12/2022 Print Date: 16/06/2023

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Slippery when spilt. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Slippery when spilt. Remove all ignition sources. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	Remove all ignition sources. Limit all unnecessary personal contact. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. When handling DO NOT eat, drink or smoke. Always wash hands with soap and water after handling. Avoid physical damage to containers. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS.
Other information	 Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources.

Issue Date: **23/12/2022**Print Date: **16/06/2023**

- ▶ Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ► Metal can or drum
- ▶ Packaging as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.
- Storage incompatibility
- Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
AC AXICAN OIL	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
canola oil	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
canola oil	Е	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

Exposure controls

Appropriate engineering controls	General exhaust is adequate under normal operating conditions.
Individual protection measures, such as personal protective equipment	
Eye and face protection	 Safety glasses with side shields. Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].
Skin protection	See Hand protection below
Hands/feet protection	 Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber
Body protection	See Other protection below
	► Overalls. ► P.V.C apron.

Other protection

Barrier cream.Skin cleansing cream.Eye wash unit.

Issue Date: 23/12/2022 Print Date: 16/06/2023

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class1	-
up to 50	1000	-	A-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	A-2
up to 100	10000	-	A-3
100+			Airline**

 $^{^{\}star}$ - Continuous Flow ** - Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Pale amber oil with slight vegetable oil odour; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	0.917
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	4.5	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	>100	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>268 (COC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Applicable

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

Issue Date: **23/12/2022**Print Date: **16/06/2023**

SECTION 11 Toxicological information

Leaend:

CANOLA OIL

Information on toxicological effects The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives Inhaled using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Although ingestion is not thought to produce harmful effects (as classified under EC Directives), the material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is Ingestion evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves Skin Contact be used in an occupational setting. Irritation and skin reactions are possible with sensitive skin Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation Eye into the eve(s) of experimental animals. Repeated or prolonged eve contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives Chronic using animal models); nevertheless exposure by all routes should be minimised as a matter of course. **TOXICITY IRRITATION** AC AXICAN OIL Not Available Not Available TOXICITY IRRITATION canola oil Not Available Not Available

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS.

Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Polyunsaturated fats (PUFAs) protect against cardiovascular disease by providing more membrane fluidity than monounsaturated fats (MUFAs), but they are more vulnerable to lipid peroxidation (rancidity). On the other hand, some monounsaturated fatty acids (in the same way as saturated fats) may promote insulin resistance, whereas polyunsaturated fatty acids may be protective against insulin resistance. Furthermore, one the large scale study found that increasing monounsaturated fat and decreasing saturated fat intake could improve insulin sensitivity, but only when the overall fat intake of the diet was low. Studies have shown that substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure. More physical activity was associated with a higher-oleic acid diet (a MUFA) than one of a palmitic acid diet (saturated fat). From the study, it is shown that more monounsaturated fats lead to less anger and irritability.

Foods containing monounsaturated fats reduce low-density lipoprotein (LDL) cholesterol, while possibly increasing high-density lipoprotein (HDL) cholesterol. However, their true ability to raise HDL is still in debate.

Levels of oleic along with other monounsaturated fatty acids in red blood cell membranes were positively associated with breast cancer risk. The saturation index (SI) of the same membranes was inversely associated with breast cancer risk. Monounsaturated fats and low SI in erythrocyte membranes are predictors of postmenopausal breast cancer. Both of these

In children, consumption of monounsaturated oils is associated with healthier serum lipid profiles.

variables depend on the activity of the enzyme delta-9 desaturase (delta-9-d).

The Mediterranean Diet is one heavily influenced by monounsaturated fats. People in Mediterranean countries consume more total fat than Northern European countries, but most of the fat is in the form of monounsaturated fatty acids from olive oil and omega-3 fatty acids (PUFAs) from fish, vegetables, and certain meats like lamb, while consumption of saturated fat is minimal in comparison. The diet in Crete is fairly high in total fat (40% of total calories, almost exclusively provided by olive oil - oleic acid) yet affords a remarkable protection from coronary heart disease (and probably colon cancer).

For aliphatic fatty acids (and salts)

Acute oral (gavage) toxicity:

The acute oral LD50 values in rats for both were greater than >2000 mg/kg bw Clinical signs were generally associated with poor condition following administration of high doses (salivation, diarrhoea, staining, piloerection and lethargy). There were no adverse effects on body weight in any study In some studies, excess test substance and/or irritation in the gastrointestinal tract was

Continued...

Issue Date: 23/12/2022 Print Date: 16/06/2023

observed at necropsy.

Skin and eye irritation potential, with a few stated exceptions, is chain length dependent and decreases with increasing chain length

According to several OECD test regimes the animal skin irritation studies indicate that the C6-10 aliphatic acids are severely irritating or corrosive, while the C12 aliphatic acid is irritating, and the C14-22 aliphatic acids generally are not irritating or mildly irritating.

Human skin irritation studies using more realistic exposures (30-minute,1-hour or 24-hours) indicate that the aliphatic acids have sufficient, good or very good skin compatibility.

Animal eye irritation studies indicate that among the aliphatic acids, the C8-12 aliphatic acids are irritating to the eye while the C14-22 aliphatic acids are not irritating.

Eye irritation potential of the ammonium salts does not follow chain length dependence; the C18 ammonium salts are corrosive to the eyes.

Dermal absorption:

The in vitro penetration of C10, C12, C14, C16 and C18 fatty acids (as sodium salt solutions) through rat skin decreases with increasing chain length. At 86.73 ug C16/cm2 and 91.84 ug C18/cm2, about 0.23% and less than 0.1% of the C16 and C18 soap solutions is absorbed after 24 h exposure, respectively.

Sensitisation:

No sensitisation data were located.

Repeat dose toxicity:

Repeated dose oral (gavage or diet) exposure to aliphatic acids did not result in systemic toxicity with NOAELs greater than the limit dose of 1000 mg/kg bw. .

Mutagenicity

Aliphatic acids do not appear to be mutagenic or clastogenic in vitro or in vivo

Carcinogenicity

No data were located for carcinogenicity of aliphatic fatty acids.

Reproductive toxicity

No effects on fertility or on reproductive organs, or developmental effects were observed in studies on aliphatic acids and the NOAELs correspond to the maximum dose tested. The weight of evidence supports the lack of reproductive and developmental toxicity potential of the aliphatic acids category.

Given the large number of substances in this category, their closely related chemical structure, expected trends in physical chemical properties, and similarity of toxicokinetic properties, both mammalian and aquatic endpoints were filled using read-across to the closest structural analogue, and selecting the most conservative supporting substance effect level. Structure-activity relationships are not evident for the mammalian toxicity endpoints. That is, the low mammalian toxicity of this category of substances limits the ability to discern structural effects on biological activity. Regardless, the closest structural analogue with the most conservative effect value was selected for read across. Irritation is observed for chain lengths up to a cut-off" at or near 12 carbons).

Metabolism:

The aliphatic acids share a common degradation pathway in which they are metabolized to acetyl-CoA or other key metabolites in all living systems. Common biological pathways result in structurally similar breakdown products, and are, together with the physico-chemical properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health.

Differences in metabolism or biodegradability of even and odd numbered carbon chain compounds or saturated/ unsaturated compounds are not expected; even-and odd-numbered carbon chain compounds, and the saturated and unsaturated compounds are naturally occurring and are expected to be metabolized and biodegraded in the same manner.

The acid and alkali salt forms of the homologous aliphatic acid are expected to have many similar physicochemical and toxicological properties when they become bioavailable; therefore,data read across is used for those instances where data are available for the acid form but not the salt, and vice versa. In the gastrointestinal tract, acids and bases are absorbed in the undissociated (non-ionised) form by simple diffusion or by facilitated diffusion. It is expected that both the acids and the salts will be present in (or converted to) the acid form in the stomach. This means that for both aliphatic acid or aliphatic acid salt,the same compounds eventually enter the small intestine, where equilibrium, as a result of increased pH, will shift towards dissociation (ionised form).

Hence, the situation will be similar for compounds originating from acids and therefore no differences in uptake are anticipated Note that the saturation or unsaturation level is not a factor in the toxicity of these substances and is not a critical component of the read across process..

Toxicokinetics:

The turnover of the [14C] surfactants in the rat showed that there was no significant difference in the rate or route of excretion of 14C given by intraperitoneal or subcutaneous administration. The main route of excretion was as 14CO2 in the expired air at 6 h after administration. The remaining material was incorporated in the body. Longer fatty acid chains are more readily incorporated than shorter chains. At ca. 1.55 and 1.64 mg/kg bw, 71% of the C16:0 and 56% of the C18:0 was incorporated and 21% and 38% was excreted as 14CO2, respectively.

Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oils, are mainly formed during the deodorisation step in the refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they readily hydrolyze into the free form glycidol in the gastrointestinal tract, which has been found to induce tumours in various rat tissues. Therefore, significant effort has been devoted to inhibit and eliminate the formation of GEs GEs contain a common terminal epoxide group but exhibit different fatty acid compositions. This class of compounds has been reported in edible oils after overestimation of 3-monochloropropane-1,2-diol (3-MCPD) fatty acid esters analysed by an indirect method, 3-MCPD esters have been studied as food processing contaminants and are found in various food types and food ingredients, particularly in refined edible oils. 3-Monochloropropane-1,2-diol (3-MCPD) and 2-monochloropropane-1,3-diol (2-MCPD) are chlorinated derivatives of glycerol (1,2,3-propanetriol). 3- and 2-MCPD and their fatty acid esters are among non-volatile chloropropanols, Glycidol is associated with the formation and decomposition of 3- and 2-MCPD. It forms

Issue Date: 23/12/2022 Print Date: 16/06/2023

monoesters with fatty acids (GE) during the refining of vegetable oils. Chloropropanols are formed in HVP during the hydrochloric acid-mediated hydrolysis step of the manufacturing process. In food production, chloropropanols form from the reaction of endogenous or added chloride with glycerol or acylglycerol.

Although harmful effects on humans and animals have not been demonstrated, the corresponding hydrolysates, 3-MCPD and glycidol, have been identified as rodent genotoxic carcinogens, ultimately resulting in the formation of kidney tumours (3-MCPD) and tumours at other tissue sites (glycidol). Therefore, 3-MCPD and glycidol have been categorised as "possible human carcinogens (group 2B) and "probably carcinogenic to humans (group 2A), respectively, by the International Agency for Research on Cancer (IARC).

Diacylglyceride (DAG) based oils produced by one company were banned from the global market due to "high levels" of GEs. Several reports have also suggested that a bidirectional transformation process may occur not only between glycidol and 3-MCPD but also their esterified forms in the presence of chloride ions. The transformation rate of glycidol to 3-MCPD was higher than that of 3-MCPD to glycidol under acidic conditions in the presence of chloride ion.

Precursors of GEs in refined oils have been identified as partial acylglycerols, that is, DAGs and monoacylglycerides (MAGs); however, whether they also originate from triacylglycerides (TAGs) is still a topic of controversial debates. Several authors noted that pure TAGs were stable during heat treatment (such as 235 deg C) for 3 h and were therefore not involved in the formation of GEs. However, experimental results have shown that small amounts of GEs are present in a heat-treated oil model consisting of almost 100% TAGs. The formation of GEs from TAGs can be attributed to the pyrolysis of TAGs to DAGs and MAGs. In contrast, 3-MCPD esters in refined oils can be obtained from TAG . Presently, the mechanism for the formation of GE intermediates and the relationship between GEs and 3-MCPD esters are still unknown.

A high consumption of oxidised polyunsaturated fatty acids (PUFAs), which are found in most types of vegetable oil, may increase the likelihood that postmenopausal women will develop breast cancer. Similar effect was observed on prostate cancer, but the study was performed on mice Another "analysis suggested an inverse association between total polyunsaturated fatty acids and breast cancer risk, but individual polyunsaturated fatty acids behaved differently [from each other]. [...] a 20:2 derivative of linoleic acid [...] was inversely associated with the risk of breast cancer"

PUFAs are prone to spontaneous oxidation/ peroxidation. The feeding of lipid oxidation products and oxidised fats has been reported to cause adverse biological effects on laboratory animals, including growth retardation, teratogenicity, tissue damage and increased liver and kidney weights, as well as cellular damage to the testes and epididymes, increased peroxidation of membrane and tissue lipids and induction of cytochrome P450 activities in the colon and liver.

The propensity for PUFAs to oxidise leads to the generation of free radicals and eventually to rancidity.

Culinary oils, when heated, undergo important chemical reaction involving self-sustaining, free radical-mediated oxidative deterioration of PUFAs. Such by-products may be cytotoxic, mutagenic, reproductive toxins and may produce chronic disease. Samples of repeatedly used oils collected from fast-food retail outlets and restaurants have confirmed the production of aldehydic lipid oxidation products (LOPs) at levels exceeding 10 exp-2 moles per kilogram (mol/kg) during "on-site" frying episodes. Volatile emissions from heated culinary oils used in Chinese-style cooking are mutagenic; exposure to such indoor air pollution may render humans more susceptible to contracting lung or further cancers, together with rhinitis and diminished lung function. The high temperatures used in standard (especially Chinese) frying result in fumes that are rich in volatile LOPs, including acrolein. The end products of lipid peroxidation are reactive aldehydes, such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE), the second one being known also as "second messenger of free radicals" and major bioactive marker of lipid peroxidation, due to its numerous biological activities resembling activities of reactive oxygen species. end-products of lipid peroxidation may be mutagenic and carcinogenic malondialdehyde reacts with deoxyadenosine and deoxyguanosine in DNA, forming DNA adducts. Malondialdehyde produces mutagenic effects in several bioassays.

Side products of lipid peroxidation can also exert toxic effects, even at sites distant from the primary oxidation site. Such products (typically malondialdehyde and a large group of hydroxyalkenals - alpha-beta-unsaturated aldehydes) may interact with protein thiols (producing intermolecular cross-links) and, as a result produce functional impairment to enzyme systems, receptors and structural proteins. Aldehydes may also inhibit protein biosynthesis and increase osmotic fragility of lysosymes (releasing hydrolytic enzymes) and other subcellular organelles. They may also react with nucleic acids.

The toxicity of lipid hydroperoxides to animals is best illustrated by the lethal phenotype of glutathione peroxidase 4 (GPX4) knockout mice. These animals do not survive past embryonic day 8, indicating that the removal of lipid hydroperoxides is essential for mammalian life.

Peroxidised linoleic acid applied to the shaved skin of guinea pigs, in a patch test experiment, produced necrosis and bleeding. When the abdominal skin of guinea pig was patched for 8 days with a cream containing 25 nmol (in terms of malondialdehyde) of lipid peroxides per gram, a thickening of the epidermis was found

Lipid peroxidation in cellular membranes may produce several morphological alterations resulting, for example, in membrane aggregation, deformation or breakage. This may result in the release of hydrolytic enzymes which in turn may degrade functional macromolecules and cause secondary damage. In addition membrane-bound enzyme systems may be disrupted.

No significant acute toxicological data identified in literature search.

Epoxidation of double bonds is a common bioactivation pathway for alkenes. The allylic epoxides, so formed, were found to possess sensitising capacity in vivo and in vitro and to chemically reactive towards a common hexapeptide containing the most common nucleophilic amino acids. Further-more, a SAR study of potentially prohaptenic alkenes demonstrated that conjugated dienes in or in conjunction with a six-membered ring are prohaptens, whereas related alkenes containing isolated double bonds or an acyclic conjugated diene were weak or nonsensitizing compounds. This difference in sensitizing capacity of conjugated dienes as compared to alkenes with isolated double bonds was found to be due to the high reactivity and sensitizing capacity of the allylic epoxides metabolically formed from conjugated dienes.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al: Chem. Res. Toxicol. 2008, 21, pp 53-69

 $http://ftp.cdc.gov/pub/Documents/OEL/06.\%20Dotson/References/Karlberg_2008.pdf$

For polyunsaturated fatty acids and oils (triglycerides)

Studies on animals have shown a link between polyunsaturated fat and the incidence of tumours. In some of these studies the incidence of tumours increased with increasing intake of polyunsaturated fat, up to about 5% of total energy, near to the middle of the current dietary intake in humans.

The propensity for polyunsaturated fats to oxidise is another possible risk factor. This leads to the generation of free radicals and eventually to rancidity

Issue Date: **23/12/2022**Print Date: **16/06/2023**

Research evidence suggests that consuming high amounts of polyunsaturated fat may increase the risk of cancer spreading. Researchers found that linoleic acid in polyunsaturated fats produced increasing membrane phase separation, and thereby increased adherence of circulating tumour cells to blood vessel walls and remote organs.

At least one study in mice has shown that consuming high amounts of polyunsaturated fat (but not monounsaturated fat) may increase the risk of metastasis in cancer.

Lipid peroxides with complex components can damage macromolecules, such as DNA, proteins, and membrane lipids. Some components of lipid peroxides, for example, 4,5(E)-epoxy-2(E)-heptenal (EH) can react with L-lysine and damage proteins . 4,5-epoxy-2-alkenals can react with phenylalanine and cause strecker-type degradation of amino acids. Autoxidized methyl linoleate can decrease DNA synthesis in thymocytes Animals consuming oxidized lipids suffered a wide array of biological consequences, such as decreased feed utilization and performance, oxidative stress and tissue lipid oxidation and, most strikingly, adverse effects on redox indices and shelf life of meat. This manifested in malondialdehyde (MDA) content reduced activities of antioxidant enzymes and elevated transcript levels of oxidative stress-responsive genes

The intestinal mucosa is directly exposed to oxidized fatty acids of dietary origin and this tissue readily experiences redox imbalances and oxidative stress after the ingestion of large amounts of oxidized fat. As the first line of defense, the intestines with abundant gut-associated lymphoid tissues (GALTs) and lymphocytes play an important role in immune defense. The immune response in the intestinal tract is complex and is impaired by any damage to the mucosal barrier. When oxidative stress of the intestines caused by oxidized fat occurs, its immune competence and responsiveness may be compromised by the peroxides they contain

When body insulin levels are low, fatty acids flow from the fat cells into the bloodstream and are taken up by various cells and metabolised in a process called beta-oxidation. The end result of beta-oxidation is a molecule called acetyl-coA, and as more fatty acids are released and metabolised, acetyl-coA levels in the cells rise. Liver cells shunt excess acetyl-coA into "ketogenesis", or the making of ketone bodies. When the rate of synthesis of ketone bodies exceeds the rate of utilisation, their concentration in blood increases; this is known as ketonaemia. This is followed by ketonuria – excretion of ketone bodies in urine. The overall picture of ketonaemia and ketonuria is commonly referred as ketosis. Smell of acetone in breath is a common feature in ketosis

For polyunsaturated fatty acids and oils (triglycerides), products of heating and recycling.*

Culinary oils, when heated, undergo important chemical reaction involving self-sustaining, free radical-mediated oxidative deterioration of polyunsaturated fatty acids (PUFAs). Such by-products may be cytotoxic, mutagenic, reproductive toxins and may produce chronic disease.

Saturated fatty acid (SFA)-rich fats also undergo such reactions but to a substantially lower degree.

Samples of repeatedly used oils collected from fast-food retail outlets and restaurants have confirmed the production of aldehydic lipid oxidation products (LOPs, active aldehydes) at levels exceeding 10 exp-2 moles per kilogram (mol/kg) during "on-site" frying episodes. Volatile emissions from heated culinary oils used in Chinese-style cooking are mutagenic; exposure to such indoor air pollution may render humans more susceptible to contracting lung or further cancers, together with rhinitis and diminished lung function. The high temperatures used in standard (especially Chinese) frying result in fumes that are rich in volatile LOPs, including acrolein.

Teratogenic actions. In principle, if aldehydic LOPs induce DNA and chromosomal damage during embryo development, foetal malformations may arise. A study was conducted to investigate the ability of the chain-breaking antioxidant a-tocopherol (a-TOH, vitamin E) to prevent the teratogenic effects of uncontrolled diabetes mellitus in rats (a study based on the hypothesis that diabetic animals have an elevated level of oxidative stress and therefore in vivo lipid peroxidation when expressed relative to that of healthy controls). It found that a PUFA-rich culinary oil (which served as a vehicle for oral administration of a-TOH) increased the rate of malformations and reabsorptions in both normal and diabetic pregnancies. Further investigations revealed that safflower oil subjected to thermal stressing episodes (according to standard frying practices for a period of 20 minutes) markedly enhanced its teratogenic effects. That is, the evidence indicates that the LOPs therein are primarily responsible for these actions. Further adverse health effects of dietary LOPs. Further documented health effects of LOPs include their pro-inflammatory and gastropathic properties (for the latter, oral administration of the LOP, 4-hydroxy-trans-2-nonenal -HNE- to rats at a dose level of only 0.26 umol-dm-3, a level similar to that of healthy human blood plasma, induced peptic ulcers), and also a significant elevation in systolic blood pressure and an impaired vasorelaxation observed in rats fed pre-heated soy oil

Oxidative degradation process involving culinary oils, can generate extremely toxic conjugated lipid hydroperoxydienes (CHPDs). These are unstable at standard frying temperatures (ca. 180 degrees C) and are degraded to a broad range of secondary products, particularly saturated and unsaturated aldehydes, together with di- and epoxyaldehydes. Such aldehydic fragments also have toxicological properties in humans owing to their high reactivity with critical biomolecules in vivo (proteins such as low-density lipoprotein, amino acids, thiols such as glutathione, DNA, etc.). Despite their reactivities, high levels of CHPDs can remain in PUFA-rich oils which have been subjected to routine frying practices.

Thermally stressed PUFA-containing culinary oils contain high levels of alpha,beta-unsaturated aldehydes (including trans-2-alkenals, and cis,trans- and trans,trans-alka-2,4-dienals, the latter including the mutagen trans,trans-2,4-decadienal), and n-alkanals, together with their CHPD and hydroxydiene precursors .

Toxicological and pathogenic properties of dietary LOPS

Potential influence of dietary LOPS on metabolic pathways. As a consequence of their absorption from the gut into the systemic circulation, LOPs may penetrate cellular membranes, allowing their entry into particular intracellular sites/organelles where many critical metabolic processes occur. Literature evidence indicates that feeding thermally stressed or repeatedly used culinary oils to experimental animals induces significant modifications to key liver microsomal pathways and to the mitochondrial respiratory chain, for example. These effects are likely to occur via reactions of LOPs with key enzymes (and more especially their active sites), for example, the oxidation of active methioninyl and cysteinyl residues by CHPDs, or alteration of critical side-chain amino acid amine or thiol groups with aldehydes via Schiff base or Michael addition reactions.

Atherosclerosis. Investigations have revealed that dietary derived LOPs can accelerate all three stages of the development of atherosclerosis (i.e., endothelial injury, accumulation of plaque, and thrombosis). Animal studies have shown that diets containing thermally stressed, PUFA-laden (and hence LOP-rich) oils exhibit a greater atherogenicity than those containing unheated ones. Because cytotoxic aldehydes can be absorbed, they have the capacity to attack and structurally alter the apolipoprotein B component of low density lipoproteins (LDLs). This mechanism can engender uptake of lipid-loaded LDLs by macrophages, which, in turn, transforms them to foam cells, the accumulation of which is responsible for the development of aortic fatty streaks, a hallmark of the aetiology of atherosclerosis and its pathological sequelae. More recently, our co-investigators found that

Issue Date: **23/12/2022**Print Date: **16/06/2023**

aldehydic LOPs elevated the expression of the CD36 scavenger receptor of macrophages, a phenomenon that also promotes this process .

Mutagenic and carcinogenic properties. Since they are powerful electrophilic alkylating agents, alpha,beta-unsaturated aldehydes can covalently modify DNA base units via a mechanistically complex process that may involve their prior epoxidation in vivo. Such chemically altered bases may therefore be of mutagenic potential. Additionally, these LOPs can inactivate DNA replicating systems, a process that can, at least in principle, elevate the extent of DNA damage. Hence, following cellular uptake, such aldehydes have the potential to cause both DNA and chromosomal damage.

Malondialdehyde (MDA) is also generated by thermally stressing culinary oils, although at concentrations much lower than those of the more reactive alpha,beta-unsaturated aldehydes. MDA and other aldehydes arising from lipid peroxidation (especially acrolein) present a serious carcinogenic hazard. Indeed, adenomas and carcinomas of the thyroid gland, together with adenomas of the pancreatic islet cells, were induced in rats by MDA in a prolonged gavage study; nasal and laryngeal cancers arose in rats and hamsters, respectively, during long-term acetaldehyde inhalation experiments. Hence, both these aldehydes satisfied the NIOSH criteria for classification as carcinogens, and therefore it has set exacting limits for their occupational exposure.

The most obvious solution to the generation of LOPs in culinary oils during frying is to avoid consuming foods fried in PUFA-rich oils as much as possible. Indeed, consumers, together with those involved in the fast-food sector, could employ culinary oils of only a low PUFA content, or mono-unsaturated fatty acids (MUFA) such as canola (a variety of rape seed oil), olive oil, (both oils are rich in oleic acid) selected palm oils (rich in palmitic acid), or coconut oils (an SFA alternative rich in lauric and myristic acids) - for frying MUFAs such as oleoylglycerol adducts are much more resistant to peroxidative degradation than are PUFAs , and hence markedly lower levels of only selected classes of aldehydes are generated during frying.

Previous studies that investigated the prospective health effects or benefits of dietary PUFAs (i.e., those involving feeding trials with humans or animals or, alternatively, related epidemiological ones) should be scrutinized. With hindsight, it seems to us that many of these experimental investigations were flawed since, in addition to some major design faults, they failed to take into account or even consider the nature and concentrations of any cytotoxic LOPs present in the oils or diets involved. Similarly, corresponding epidemiological (or meta-analysis-based) investigations incorporated only the (estimated) total dietary intake of selected PUFAs and further fatty acids, and ignored any LOPs derived or derivable from frying/cooking. Even if PUFA containing culinary oils are unheated, it is virtually impossible to rule out the presence of traces of LOPs within them (analysis of apparently pure PUFAs or their corresponding triglycerides obtained from reputable commercial sources has revealed that these materials contain traces of CHPDs and/or aldehydes

As expected, the levels of total aldehydes generated increase proportionately with oil PUFA content, and over half are the more highly cytotoxic alpha,beta-unsaturated classes, which include acrolein and 4-hydroxy-trans-2-nonenal (HNE), as well as 4-hydroperoxy-, 4-hydroxy-, and 4,5-epoxy-trans-2-alkenals. Total alpha,beta-unsaturated aldehyde concentrations in culinary oils (heated at 180 deg C for 30-90 minutes or longer) are often higher than 20 mmol/kg and can sometimes approach 50 mmol/kg. Furthermore, relatively low concentrations of detectable aldehydes and their CHPD precursors are even found in newly purchased unheated culinary oils.

Acrylamide (which can exert toxic effects on the nervous system and fertility, and may also be carcinogenic) can also arise from an acrolein source when asparagine-rich foods are deep-fried in PUFA-rich oils. The levels of acrylamide generated in foods during high-temperature cooking/frying processes are substantially lower than those recorded for aldehydes formed in PUFA-rich culinary oils during frying episodes (to date, the very highest reported levels are only ca. 4 ppm, equivalent to 56 umol/kg). Acrolein is just one of the alpha,beta-unsaturated aldehydes generated in thermally stressed PUFA-rich oils: Many others generated in this manner have comparable toxicological properties The foregoing considerations exclude possible toxicological properties of their isomeric CHPD precursors (also present in the high millimolar range in thermally stressed oils) in a typical fried food meal. Indeed, in one early investigation, a single intravenous dose of methyl linoleate hydroperoxide (20 mg/kg) administered to rats gave rise to a high mortality within 24 hours (animals dying from lung damage), although a higher dose given orally was without effect. This observation may reflect the limited in vivo absorption of these particular aldehyde precursors, in contrast to the known absorption of aldehydes.

Furthermore, with regard to the risk of inhalation of aldehydes volatilised during frying practices by humans, the maximum US Occupational Safety and Health (OSHA) permissible exposure limit (PEL) for acrolein, which is an (atmospheric) level of 0.1 ppm (equivalent to only 1.8 umol/kg in the fried food model) for a time-weighted long-term (8 hour) exposure, and 0.3 ppm (5.4 umol/kg)for a short-term (15 minute) one. This 15-minute exposure time can be considered to be less than the time taken to consume a typical fried meal

The concentrations of aldehydes generated in culinary oils during episodes of heating at 180 deg C represent only what remains in the oil: Owing to their low boiling points, many of the aldehydes generated are volatilized at standard frying temperatures. These represent inhalation health hazards, in view of their inhalation by humans, especially workers in inadequately ventilated fast-food retail outlets.

The composition and content of hazardous LOPs available in fried foods depend on the identity of the frying/cooking oil and its PUFA content, the frying conditions employed, the length of the frying process, exposure of the frying medium to atmospheric oxygen, the reactivities of these agents with a range of other biomolecules (e.g., amino acids and proteins), and, to a limited extent, the antioxidant content of the frying matrix. Experiments have shown that shallow frying gives rise to much higher levels of LOPs than deep frying under the same conditions (reflecting the influence of the surface area of the frying medium, its exposure to atmospheric oxygen, and the subsequent dilution of LOPs generated into the bulk medium). In vivo absorption of dietary LOPs

Except for direct damage to the gastrointestinal epithelium, the toxicological actions exerted by LOPs depend on their rate and extent of absorption from the gut into the systemic circulation where they may cause damage to essential organs, tissues, and cells. Experiments in rats have demonstrated that trans-2-alkenals, which are generated in PUFA-containing culinary oils during thermal stressing episodes, are absorbed. Following absorption, these cytotoxic agents are metabolized by a process involving the primary addition (Michael addition reaction) of glutathione across their electrophilic carbon-carbon double bonds and finally excreted in the urine as C-3 mercapturate derivatives.

* Martin Grootveld, Victor Ruiz Rodado, and Christopher J.L. Silwood

Detection, monitoring, and deleterious health effects of lipid oxidation products generated in culinary oils during thermal stressing episodes

American Oil Chemists Society, 25 (10), pp. 614-624. November/December 2014

Chemwatch: 4888-71 Version No: 5.1 Page 11 of 15

AC AXICAN OIL

Issue Date: **23/12/2022**Print Date: **16/06/2023**

For triglycerides:

Carboxylic acid esters will undergo enzymatic hydrolysis by ubiquitously expressed GI esterases. The rate of hydrolysis is dependant on the structure of the ester, and may therefore be rapid or rather slow. Thus, due to hydrolysis, predictions on oral absorption based on the physico-chemical characteristics of the intact parent substance alone may no longer apply. When considering the hydrolysis product glycerol, absorption is favoured based on passive and active absorption of glycerol. The Cosmetic Ingredient Review (CIR) Expert Panel has issued three final reports on the safety of 25 triglycerides, i.e., fatty acid triesters of glycerin

High purity is needed for the triglycerides. Previously the Panel published a final report on a diglycerides, and concluded that the ingredients in the diglyceride family are safe in the present practices of use and concentration provided the content of 1,2-diesters is not high enough to induce epidermal hyperplasia. The Panel discussed that there was an increased level of concern because of data regarding the induction of protein kinase C (PKC) and the tumor promotion potential of 1,2-diacylglycerols. The Panel noted that, nominally, glyceryl-1,3-diesters contain 1,2-diesters, raising the concern that 1,2-diesters could potentially induce hyperplasia. The Panel did note that these compounds are more likely to cause these effects when the fatty acid chain length is <=14 carbons, when one fatty acid is saturated and one is not, and when given at high doses, repeatedly. Although minimal percutaneous absorption of triolein has been demonstrated in vivo using guinea pigs (but not hairless mice) and in vitro using full-thickness skin from hairless mice, the Expert Panel recognizes that, reportedly, triolein and tricaprylin can enhance the skin penetration of other chemicals, and recommends that care should be exercised in using these and other glyceryl triesters in cosmetic products.

The Panel acknowledged that some of the triglycerides may be formed from plant-derived or animal-derived constituents. The Panel thus expressed concern regarding pesticide residues and heavy metals that may be present in botanical ingredients. They stressed that the cosmetics industry should continue to use the necessary procedures to sufficiently limit amounts of such impurities in an ingredient before blending them into cosmetic formulations. Additionally, the Panel considered the risks inherent in using animal-derived ingredients, namely the transmission of infectious agents. Although tallow may be used in the manufacture of glyceryl tallowate and is clearly animal-derived, the Panel notes that tallow is highly processed, and tallow derivatives even more so. The Panel agrees with determinations by the U.S. FDA that tallow derivatives are not risk materials for transmission of infectious agents.

Finally, the Panel discussed the issue of incidental inhalation exposure, as some of the triglycerides are used in cosmetic sprays and could possibly be inhaled. For example, triethylhexanoin and triisostearin are reported to be used at maximum concentrations of 36% and 30%, respectively, in perfumes, and 14.7% and 10.4%, respectively, in face powders. The Panel noted that in aerosol products, 95% – 99% of droplets/particles would not be respirable to any appreciable amount. Furthermore, droplets/particles deposited in the nasopharyngeal or bronchial regions of the respiratory tract present no toxicological concerns based on the chemical and biological properties of these ingredients. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects

Cosmetic Ingredient Review (CIR): Amended Safety Assessment of Triglycerides as Used in Cosmetics August 2017 Glyceryl triesters are also known as triglycerides; ingested triglycerides are metabolized to monoglycerides, free fatty acids, and glycerol, all of which are absorbed in the intestinal mucosa and undergo further metabolism. Dermal absorption of Triolein in mice was nil; the oil remained at the application site. Only slight absorption was seen in guinea pig skin. Tricaprylin and other glyceryl triesters have been shown to increase the skin penetration of drugs. Little or no acute, subchronic, or chronic oral toxicity was seen in animal studies unless levels approached a significant percentage of caloric intake. Subcutaneous injections of Tricaprylin in rats over a period of 5 weeks caused a granulomatous reaction characterized by oil deposits surrounded by macrophages. Dermal application was not associated with significant irritation in rabbit skin. Ocular exposures were, at most, mildly irritating to rabbit eyes. No evidence of sensitization or photosensitization was seen in a guinea pig maximization test. Most of the genotoxicity test systems were negative. Tricaprylin, Trioctanoin, and Triolein have historically been used as vehicles in carcinogenicity testing of other chemicals. In one study, subcutaneous injection of Tricaprylin in newborn mice produced more tumors in lymphoid tissue than were seen in untreated animals, whereas neither subcutaneous or intraperitoneal injection in 4- to 6-week-old female mice produced any tumors in another study. Trioctanoin injected subcutaneously in hamsters produced no tumors. Trioctanoin injected intraperitoneally in pregnant rats was associated with an increase in mammary tumors in the offspring compared to that seen in offspring of untreated animals, but similar studies in pregnant hamsters and rabbits showed no tumors in the offspring. One study of Triolein injected subcutaneously in rats showed no tumors at the injection site. As part of an effort to evaluate vehicles used in carcinogenicity studies, the National Toxicology Program conducted a 2-year carcinogenicity study in rats given Tricaprylin by gavage. This treatment was associated with a statistically significant dose-related increase in pancreatic acinar cell hyperplasia and adenoma, but there were no acinar carcinomas, the incidence of mononuclear leukemia was less, and nephropathy findings were reduced, all compared to corn oil controls. Overall, the study concluded that Tricaprylin did not offer significant advantages over corn oil as vehicles in carcinogenicity studies. Trilaurin was found to inhibit the formation of neoplasms initiated by dimethylbenzanthracene (DMBA) and promoted by croton oil. Tricaprylin was not teratogenic in mice or rats, but some reproductive effects were seen in rabbits. A low level of fetal eye abnormalities and a small percentage of abnormal sperm were reported in mice injected with Trioctanoin as a vehicle control. Clinical tests of Trilaurin at 36.3% in a commercial product applied to the skin produced no irritation reactions. Trilaurin, Tristearin, and Tribehenin at 40%, 1.68%, and 0.38%, respectively, in commercial products were also negative in repeated-insult patch tests. Tristearin at 0.32% in a commercial product induced transient, mild to moderate, ocular irritation after instillation into the eves of human subjects. Based on the enhancement of penetration of other chemicals by skin treatment with glyceryl triesters, it is recommended that care be exercised in using them in cosmetic products.

Cosmetic Ingredient Review (CIR) Expert Panel: Final Report on the Safety Assessment of Trilaurin etc: Int J Toxicol, 20 Suppl 4, 61-94 2001

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For Group E aliphatic esters (polyol esters):

According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group E substances

Issue Date: 23/12/2022 Print Date: 16/06/2023

are esters of monoacids, mainly common fatty acids, and trihydroxy or polyhydroxyalcohols or polyols, such as pentaerythritol (PE), 2-ethyl-2-(hydroxymethyl)- 1,3-propanediol or trimethylolpropane (TMP), and dipentaerythritol (diPE). The Group E substances often are referred to as "polyol esters" The polyol esters are unique in their chemical characteristics since they lack beta-tertiary hydrogen atoms, thus leading to stability against oxidation and elimination. The fatty acids often range from C5-C10 to as high as C18 (e.g., oleic, stearic, isostearic, tall oil fatty acids) in carbon number and generally are derived from naturally occurring sources. Group E esters may have multiple ester linkages and may include mixed esters derived from different carbonlength fatty acid mixtures. The lack of beta-tertiary hydrogen atoms in the structure of the polyol esters makes them characteristically and chemically stable against oxidation and elimination in comparison to other ester classes or groups. For these reasons, trimethylolpropane (TMP) and pentaerythritol (PE) esters with fatty acids of C5 to C10 carbon-chain length have applications as synthetic lubricants for passenger car motor oil and military and civilian jet engines. TMP and PE esters of C18 acids (e.g., isostearic and oleic acids) also have found use in synthetic lubricant applications, including refrigeration lubricants and hydraulic fluids. Because of their higher thermal stability characteristics, they also find use in a variety of high temperature applications such as industrial oven chain oils, high temperature greases, fire resistant transformer coolants and turbine engines Polyol esters that are extensively esterified also have greater polarity, less volatility and enhanced lubricity characteristics. Acute toxicity: Depending on the degree of esterification, the polyol esters can be resistant or slow towards chemical or enzymatic hydrolysis (i.e., esterase or lipases) as a result of steric hindrance. PE and diPE esters that are capable of being enzymatically hydrolyzed will generate pentaerythritol or dipentaerythritol, and the corresponding fatty acids which, for most of the Group E esters, are comprised mainly of oleic, linoleic and stearic acids as well as the fatty acids in the C5-10 carbon-length, Similarly, TMP esters can undergo metabolism to yield trimethylolpropane (2-ethyl-2-hydroxymethyl-1,3-propanediol) and fatty acid constituents. Pentaerythritol and trimethylolpropane have been reported to have a low order of toxicity The acute oral LD50 for these substances was greater than 2000 mg/kg indicating a relatively low order of toxicity. The similarity in the low order of toxicity for these substances is consistent with their similar chemical structure and physicochemical properties. Metabolic studies of polyglyceryl esters indicated that these esters are hydrolyzed in the gastrointestinal (GI) tract, and utilization and digestibility studies supported the assumption that the fatty acid moiety is metabolized in the normal manner. Analytical

studies have produced no evidence of accumulation of the polyglycerol moiety in body tissues.

In an acute dermal toxicity study in rats, the LD50 of 1,2,3-propanetriol, homopolymer, diisooctadecanoate was>5000 mg/kg Low toxicity was reported in acute oral studies. In rats, the LD50 >2000 mg/kg for polyglyceryl-3 caprate, polyglyceryl-3 caprylate, polyglyceryl-4 caprate, diisostearoyl polyglyceryl-3 dimer dilinoleate, and the LD50 was >5000 mg/kg for polyglyceryl-3 iso-stearate, polyglyceryl-3-oleate, polyglyceryl-2 diisostearate and polyglyceryl-3 diisostearate.

The ability to enhance skin penetration was examined for several of the polyglyceryl fatty acid esters.

Repeat dose toxicity: Polyol esters are generally well tolerated by rats in 28-day oral toxicity studies. NOAEL for these substances was 1000 mg/kg/day in Sprague-Dawley rats. The TMP ester of heptanoic and octanoic acid did not produce signs of overt systemic toxicity at any dose levels tested (i.e., 100, 300, and 1000 mg/kg/day). There were no treatment-related clinical in-life, functional observation battery, or gross postmortem findings. There were no treatment related mortality, and no adverse effects on body weight, food consumption, clinical laboratory parameters, or organ weights. However, there were increased numbers of hyaline droplets in the proximal cortical tubular epithelium of the 300 and 1000 mg/kg/day in male rats. Based on these findings (hyaline droplets), the NOAEL for this polyol ester

was established at 100 mg/kg/day for male rats. Hyaline droplet formation observed in the male kidneys is believed to be a sex/species condition specific to only male rats, which has little relevance to humans.

The results from these repeated dose dermal toxicity studies suggest that polyol esters exhibit a low order of toxicity following repeated application. This may be attributable to similarities in their chemical structures, physicochemical properties, and common metabolic pathways (i.e., esters can be enzymatically hydrolyzed to the corresponding polyalcohol and the corresponding fatty acids) The polyol, hexanedioic acid, mixed esters with decanoic acid, heptanoic acid, octanoic acid and PE, was applied to the skin of groups of 10 (male and female) rats for five days a week for four (4) weeks at dose levels of 0, 125, 500 and 2000 mg/kg/day. Treated animals exhibited no signs indicative of systemic toxicity. No visible signs of irritation were observed a treatment sites. Microscopically, treated skin (viz., greater than or equal to 500 mg/kg/day) exhibited a dose-related increased incidence and severity of hyperplasia and hyperkeratosis of the epidermis and sebaceous gland hyperplasia. These effects were reversible. None of the minor changes in haematology and serum chemistry parameters were considered biologically significant. High dose females (2000 mg/kg/day) exhibited a significant increase in relative adrenal and brain weights when compared to the controls. These differences were attributed to the lower final body weight of the female animals. The NOAEL in this study for systemic toxicity was established as 500 mg /kg/day and 125 mg/kg/day for skin irritation. Two 28-day study conducted with fatty acids, C5-10, esters with pentaerythritol (CAS RN: 68424-31-7) and dipentaerythritol ester of n-C5/iso-C9 acids (CAS RN: 647028-25-9) showed no signs of overt toxicity. The 90-day study pentaerythritol ester of pentanoic acids and isononanoic acid (CAS RN: 146289-36-3) did not show any signs of overt toxicity. However, increased kidney and liver weights in the male animals was observed. In conclusion, since the effects observed are not considered to be systemic and relevant for humans, the NOAEL was found to exceed 1000 mg/kg bw for all substances based on the result from

Reproductive and developmental toxicity: Since metabolism of the polyol esters can occur, leading to the generation of the corresponding fatty acids and the polyol alcohol (such as pentaerthyritol, trimethylolpropane, and dipentaerythritol), the issue of whether these metabolites may pose any potential reproductive/developmental toxicity concerns is important.. However, the polyol alcohols such as pentaerthyritol, trimethylolpropane, and dipentaerythritol, would be expected to undergo further metabolism, conjugation and excretion in the urine. Available evidence indicates that these ester hydrolysates (i.e., hydrolysis products), primarily fatty acids (e.g., heptanoic, octanoic, and decanoic acids) and secondarily the polyol alcohols should exhibit a low order of reproductive toxicity. it can be concluded that this group of high molecular weight polyol esters should not produce profound reproductive effects in rodents.

the 28 and 90-day studies.

Genotoxicity: Polyols tested for genetic activity in the Salmonella assay, have been found to be inactive. Several polyol esters have been adequately tested for chromosomal mutation in the in vitro mammalian chromosome aberration assay, and all were inactive. Two TMP esters were also tested for in vivo chromosomal aberration in rats, and both demonstrated no activity. Thus, it is unlikely that these substances are chromosomal mutagens.

Carcinogenicity: In a 2-yr study, 28 male and 28 female rats were fed 5% polyglyceryl ester in the diet. No adverse effects on body weight, feed consumption, haematology values, or survival rate were noted. Liver function tests and renal function tests performed at 59 and 104 wks of the study were comparable between the test group and a control group fed 5% ground nut oil.

Issue Date: **23/12/2022**Print Date: **16/06/2023**

The carcass fat contained no polyglycerol, and the levels of free fatty acid, unsaponifiable residue and fatty acid composition of carcass fat were not different from the controls. Organ weights, tumour incidence and tumour distribution were similar in control and test groups. A complete histological examination of major organs showed nothing remarkable

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend

- ★ Data either not available or does not fill the criteria for classification
- ✓ Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
AC AXICAN OIL	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
canola oil	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- $\mbox{\ }^{\blacktriangleright}$ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Issue Date: **23/12/2022**Print Date: **16/06/2023**

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
canola oil	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
canola oil	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

canola oil is found on the following regulatory lists

Not Applicable

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	No (canola oil)		
Canada - DSL	Yes		
Canada - NDSL	Yes		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	No (canola oil)		
Japan - ENCS	No (canola oil)		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	No (canola oil)		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	No (canola oil)		
Vietnam - NCI	Yes		
Russia - FBEPH	No (canola oil)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	23/12/2022
Initial Date	21/03/2014

SDS Version Summary

Version	Date of Update	Sections Updated
4.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification
5.1	23/12/2022	Classification review due to GHS Revision change.

Page 15 of 15 AC AXICAN OIL

Issue Date: 23/12/2022 Print Date: 16/06/2023

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit,

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.