AC Bithrin AXICHEM Pty Ltd

Chemwatch: 20-8942 Version No: 7.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **10/12/2021**Print Date: **13/02/2022**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	AC Bithrin
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

For the control of spiders, papernest wasps, ants, cockroaches, mosquitoes, fleas, flies and ticks (excluding paralysis tick) around buildings and protection against subterranean termites around poles, fence post and farm yards.

Details of the supplier of the safety data sheet

Registered company name	AXICHEM Pty Ltd	
Address	Palings Court Nerang QLD 4211 Australia	
Telephone	7 5596 1736	
Fax	Not Available	
Website	www.axichem.com.au	
Email	msds@axichem.com.au	

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+61 1800 951 288	
Other emergency telephone numbers	+61 2 9186 1132	

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

COMBUSTIBLE LIQUID, regulated for storage purposes only

Poisons Schedule	S6	
Classification ^[1]	Flammable Liquids Category 4, Acute Toxicity (Oral) Category 4, Aspiration Hazard Category 1, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Reproductive Toxicity Category 1B, Hazardous to the Aquatic Environment Long-Term Hazard Category 1	
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/20 Annex VI		

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H227	Combustible liquid.	
H302	larmful if swallowed.	
H304	May be fatal if swallowed and enters airways.	
H315	Causes skin irritation.	
H317	May cause an allergic skin reaction.	
H318	Causes serious eye damage.	
H336	May cause drowsiness or dizziness.	
H360Df	May damage the unborn child. Suspected of damaging fertility.	
H410	Very toxic to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P271	Use only outdoors or in a well-ventilated area.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P261	Avoid breathing mist/vapours/spray.	
P264	Wash all exposed external body areas thoroughly after handling.	
P270	Do not eat, drink or smoke when using this product.	
P273	Avoid release to the environment.	
P272	P272 Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.	
P331	Do NOT induce vomiting.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P370+P378	In case of fire: Use water spray/fog to extinguish.	
P302+P352	IF ON SKIN: Wash with plenty of water.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	
P391	Collect spillage.	
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	
P330	Rinse mouth.	

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64742-47-8	62	distillates, petroleum, light, hydrotreated
Not Available	10-30	alkylamine ethoxylate
82657-04-3	11	<u>bifenthrin</u>
Not Available		(100 g/L)
872-50-4	6	N-methyl-2-pyrrolidone
Not Available	balance	Ingredients determined not to be hazardous
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- ▶ Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology]

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

SECTION 5 Firefighting measures

Page **4** of **17**

AC Bithrin

Issue Date: **10/12/2021**Print Date: **13/02/2022**

Extinguishing media

- ► Water spray or fog.
- ▶ Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- ► Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) hydrogen chloride phosgene hydrogen fluoride other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for containment and cleaning up		
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. 	
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal.	

Issue Date: 10/12/2021 Print Date: 13/02/2022

- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Store in original containers.

- Keep containers securely sealed.
- ▶ No smoking, naked lights or ignition sources.
- Other information Store in a cool, dry, well-ventilated area.
 - ▶ Store away from incompatible materials and foodstuff containers.
 - ▶ Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Glass container is suitable for laboratory quantities
- ► Metal can or drum
- ▶ Packaging as recommended by manufacturer.
- ▶ Check all containers are clearly labelled and free from leaks.

Storage incompatibility

► Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	distillates, petroleum, light, hydrotreated	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	N-methyl-2-pyrrolidone	1-Methyl- 2-pyrrolidone	25 ppm / 103 mg/m3	309 mg/m3 / 75 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
distillates, petroleum, light, hydrotreated	140 mg/m3	1,500 mg/m3	8,900 mg/m3
N-methyl-2-pyrrolidone	30 ppm	32 ppm	190 ppm

Ingredient	Original IDLH	Revised IDLH
distillates, petroleum, light, hydrotreated	2,500 mg/m3	Not Available
bifenthrin	Not Available	Not Available
N-methyl-2-pyrrolidone	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
bifenthrin	E ≤ 0.01 mg/m³			
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.			

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- ► Safety glasses with side shields.
- Chemical goggles.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

AC Bithrin

- ▶ Wear chemical protective gloves, e.g. PVC.
- ► Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.
- Barrier cream.
- ► Skin cleansing cream.
- ► Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

AC Bithrin

Material	СРІ
BUTYL	A
PE/EVAL/PE	A
NATURAL RUBBER	В
PVA	В

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Respiratory protection

Type AK Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS	-	AK-PAPR-AUS / Class 1
up to 50 x ES	-	AK-AUS / Class 1	-
up to 100 x ES	-	AK-2	AK-PAPR-2 ^

^ - Full-face

 $A(All\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gasses,\ B2 = Acid\ gas$

Issue Date: **10/12/2021**Print Date: **13/02/2022**

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Clear amber liquid with typical solvent odour; forms an emulsion in water.		
Physical state	Liquid	Relative density (Water = 1)	0.912
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	241
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>61	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	4.3 (solvent)	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	0.4 (solvent)	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	0.024	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Page **9** of **17**

AC Bithrin

Issue Date: **10/12/2021**Print Date: **13/02/2022**

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation hazard is increased at higher temperatures.

Inhaled

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage.

Skin Contact

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Ingestion may result in nausea, abdominal irritation, pain and vomiting

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eve

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Chronic

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of:

- clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue,

Issue Date: 10/12/2021 Print Date: 13/02/2022

malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.

The teratogenic potential, subchronic and long term inhalation toxicity of N-methyl-2-pyrrolidone (NMP has been studied in rats. No evidence of nephrotoxicity was seen.

No carcinogenic effects were observed. Very high doses are embryotoxic to rats and mice. Reproductive effects have been reported in animals.

Chronic poisoning by natural pyrethrins may result in convulsion, tetanic paralysis, rapid and uneven heart beat, liver and kidney damage, or death.

The natural pyrethrins may produce hypersensitivity, especially following previous sensitising exposure. In general, repeated exposures over 2 or 3 years are required to elicit a response and involve exposure to pyrethrum rather than its individual components (including pyrethrins). The sesquiterpene lactone (pyrethrosin) and the pyrethrum glycoproteins account for the immediate and delayed hypersensitivity seen in guinea pigs following a single injection of ground chrysanthemum in Freud's adjuvant. Mild erythematic vesicular dermatitis (with papules), pruritus, localized oedema (particularly of the face, lips and eyelids), rhinitis, tachycardia, pallor and sweating are the most common syndromes. An initial skin sensitisation can progress to marked dermal oedema and skin cracking. Pyrethrum dermatitis appears to increase in hot weather or under conditions were heavy perspiration is produced. The active ingredients of pyrethrum (except pyrethrin II) are inactive in patch tests. Those patients allergic to ragweed pollen are particularly sensitive to pyrethrin.

Rats fed on a diet of pyrethrins for 5000 ppm for 2 years showed some signs of tissue damage including liver lesions, bile duct proliferation and focal necrosis of the liver cells. A no-effect level of 1000 ppm found in animal experiments correspond to a daily dose of 3600 mg/man.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils.

AO Districto	TOXICITY	IRRITATION	
AC Bithrin	Oral (Rat) LD50: 531 mg/kg ^[2]	Not Available	
	TOXICITY	IRRITATION	
distillates, petroleum, light,	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
hydrotreated	Inhalation(Rat) LC50; >4.3 mg/l4h ^[1]	Skin: adverse effect observed (irritating) ^[1]	
	Oral (Rat) LD50; >5000 mg/kg ^[2]		
L. Warnellander	TOXICITY	IRRITATION	
bifenthrin	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye (rabbit): non-irritant *	
blientiilli	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye (rabbit): non-irritant *	

	Oral (Rat) LD50; 54.5 mg/kg ^[2]	Skin (rabbit): non-irritant *
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 8000 mg/kg ^[2]	Eye (rabbit): 100 mg - moderate
N-methyl-2-pyrrolidone	Inhalation(Rat) LC50; 3.1-8.8 mg/l4h ^[2]	
	Oral (Rat) LD50; 3914 mg/kg ^[2]	
Legend:	Value obtained from Europe ECHA Registered Substances - A Unless otherwise specified data extracted from RTECS - Regist	,

No significant acute toxicological data identified in literature search.

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cycloparaffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.

For "kerosenes'

Acute toxicity: Oral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg The dermal LD50s of the same three kerosenes were all >2.0 g/kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulfurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported in rats when exposed for eight hours to saturated vapor of deodorised kerosene (probably a desulfurised kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l

When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation.

An eye irritation in rabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulfurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by day 7 had resolved. Straight run kerosene (CAS No. 8008-20-6), Jet A, and hydrodesulfurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs

Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects

Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerosene (CAS No. 8008-20-6) were applied undiluted to the skin of male and female New Zealand white rabbits The test material was applied 3x/week for 28 days. One male and one female in the 2000 mg/kg dose group found dead on days 10 and 24 respectively were thought to be treatment-related. Clinical signs that were considered to be treatment-related included: thinness, nasal discharge, lethargy, soiled anal area, anal discharge, wheezing. The high dose group appeared to have a treatment related mean body weight loss when compared to controls. Dose-related skin irritation was observed, ranging from "slight" to "moderate" in the low and high dose groups, respectively. Other treatment-related dermal findings included cracked, flaky and/or leathery skin, crusts and/or hair loss. Reductions in RBC, haemoglobin and haematocrit were seen in the male dose groups. There were no treatment related effects on a variety of clinical chemistry values. Absolute and relative weights for a number of organs were normal, with the following exceptions that were judged to be treatment-related:

- increased relative heart weights for the mid- and high- dose males and females,
- increased absolute and relative spleen weights in treated females, and
- differences in absolute and relative adrenal weights in both male and female treated animals (considered to be stress-related and therefore, indirectly related to treatment).

Gross necropsy findings were confined largely to the skin. Enlarged spleens were seen in the female groups. Microscopic examination of tissues taken at necropsy found proliferative inflammatory changes in the treated skin of all male and female animals in the high dose group. These changes were, in the majority of animals, accompanied by an increase in granulopoiesis of the bone marrow. Four of six high dose males had testicular changes (multifocal or diffuse tubular hypoplasia) that were considered by the study authors to be secondary to the skin and/or weight changes.

In a different study, hydrodesulfurised kerosene was tested in a thirteen-week dermal study using Sprague-Dawley rats. Test material was applied 5x/week to the skin of male and female rats at dose levels of 165, 330 and 495 mg/kg. Aside from skin irritation at the site of application, there were no treatment-related clinical signs during the study. Screening of all animals using a functional observation battery (FOB) did not find any substance-related effects. Opthalomological examination of all animals also found no treatment-related effects. There were no treatment-related effects on growth rates, hematological or clinical chemical values, or absolute or relative organ weights. Microscopic examination of tissues from animals surviving to termination found no treatment-related changes, with the exception of a minimal degree of a proliferative and inflammatory changes in the skin.

A hydrodesulfurised middle distillate (CAS no. 64742-80-9) has also been tested in a four week inhalation study. In the study,

DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED

Page 12 of 17

AC Bithrin

Issue Date: **10/12/2021**Print Date: **13/02/2022**

Sprague-Dawley rats were exposed to a nominal concentration of 25mg/m3 kerosene. Exposures were for approximately 6 hr/day, five days each week for four consecutive weeks. There were no treatment-related effects on clinical condition, growth rate, absolute or relative organ weights, or any of the hematological or clinical chemistry determinations. Microscopic examination found no treatment-related changes observed in any tissues.

Carcinogenicity: In addition to the repeat-dose studies discussed above, a number of dermal carcinogenicity studies have been performed on kerosenes or jet fuels. Following the discovery that hydrodesulfurised (HDS) kerosene caused skin tumors in lifetime mouse skin painting studies, the role of dermal irritation in tumor formation was extensively studied. HDS kerosene proved to be a mouse skin tumor promoter rather than initiator, and this promotion required prolonged dermal irritation. If the equivalent dose of kerosene was applied to the skin in manner that did not cause significant skin irritation (eg, dilution with a mineral oil) no skin tumors occurred. Dermal bioavailability studies in mice confirmed that the reduced irritation seen with samples in mineral oil was not due to decreased skin penetration. The effect of chronic acanthosis on the dermal tumorigenicity of a hydrodesulfurised kerosene was studied and the author concluded that hyperplasia was essential for tumor promotion. However, the author also concluded that subacute inflammation did not appear to be a significant factor

A sample of a hydrodesulfurised kerosene has been tested in an initiation-promotion assay in male CD-1 mice. Animal survivals were not effected by exposure to the kerosene. The study's authors concluded that the kerosene was not an initiator but it did show tumor promoting activity.

In-Vitro (Genotoxicity): The potential in vitro genotoxicities of kerosene and jet fuel have been evaluated in a variety of studies. Standard Ames assays on two kerosene samples and a sample of Jet A produced negative results with/without activation. Modified Ames assays on four kerosenes also produced negative results (with/without activation) except for one positive assay that occurred with activation. The testing of five kerosene and jet fuel samples in mouse lymphoma assays produced a mixture of negative and positive results. Hydrodesulfurized kerosene tested in a sister chromatid exchange assay produced negative results (with/without activation)

In-Vivo Genotoxicity: Multiple *in vivo* genotoxicity studies have been done on a variety of kerosene-based materials. Four samples of kerosene were negative and a sample of Jet A was positive in *in vivo* bone marrow cytogenetic tests in Sprague-Dawley rats. One of the kerosene samples produced a positive response in male mice and negative results in females when tested in a sister chromatid exchange assay. Both deodorised kerosene and Jet A samples produced negative results in dominant lethal assays. The kerosene was administered to both mice and rats intraperitoneally, while the jet fuel was administered only to mice via inhalation.

Reproductive/Developmental Toxicity Either 0, 20, 40 or 60% (v/v) kerosene in mineral oil was applied to the skin of the rats. The dose per body weight equivalents were 0, 165, 330 and 494 mg/kg. Test material was applied daily, 7 days/week from 14 days premating through 20 days of gestation. There were no treatment-related effects on mortality and no clinical signs of toxicity were observed. There were no compound-related effects on any of the reproductive/developmental parameters. The authors concluded that the no observable effect level (NOEL) for reproductive/developmental toxicity of HDS kerosene under the treatment conditions of the study was 494 mg/kg/day.

Developmental toxicity screening studies on a kerosene and a sample of Jet A have been reported . There were no compound-related deaths in either study. While kerosene produced no clinical signs, the jet fuel produced a dose-related eye irritation (or infection). The signs of irritation lasted from 2 to 8 days with most animals showing signs for 3 days. Neither of the test materials had an effect on body weights or food consumption. Examination of offspring at delivery did not reveal any treatment-related abnormalities, soft tissue changes or skeletal abnormalities. The sex ratio of the fetuses was also unaffected by treatment with either of the compounds.

NOEL (dogs) 1.5 mg/day/1y * ADI 0.02 mg/kg * Non-teratogenic in rats (< 2 mg/kg/day) and rabbits (8 mg/kg/day)* No skin sensitisation (guinea pigs) *

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Acute Toxicity: Bifenthrin is moderately toxic to mammals when ingested. Large doses may cause incoordination, tremor, salivation, vomiting, diarrhea, and irritability to sound and touch. The dose at which half of the test animal die, the LD50, for bifenthrin is about 54 mg/kg in female rats and 70 mg/kg in male rats. The LD50 for rabbits whose skin is exposed to bifenthrin is greater than 2,000 mg/kg. Bifenthrin does not sensitize the skin of guinea pigs. Although it does not cause inflammation or irritation on human skin, it can cause a tingling sensation which lasts about 12 hours. It is virtually non-irritating to rabbit eyes.

Chronic Toxicity: No information Available.

Reproductive Effects: The dose at which no toxic effect of bifenthrin is observed on the mother (maternal toxicity NOEL) is 1 mg/kg/day for rats and 2.67 mg/kg/day for rabbits. At higher doses, test animals had tremors. The dose at which no toxic effect is observed on development (developmental toxicity NOEL) is 1 mg/kg/day for rats and is greater than 8 mg/kg/day for rabbits. Teratogenic Effects: Bifenthrin does not demonstrate any teratogenic effects at the highest levels tested (100 ppm, approximately 5.5 mg/kg/day) in a two-generational study in rats.

Mutagenic Effects: Evidence of mutagenic effects from exposure to bifenthrin are inconclusive. Studies of mouse white blood cells were positive for gene mutation. However, other tests of bifenthrin's mutagenic effects, including the Ames test and studies in live rat bone marrow cells, were negative.

Carcinogenic Effects: There was no evidence of cancer in a 2-year study of rats who ate as much as 10 mg/kg/day of bifenthrin. However, an 87 week feeding study of mice with doses of 7, 29, 71, and 86 mg/kg showed a significantly higher, dose related trend of increased tumor incidence in the male urinary bladder. The incidence was significantly increased at 86 mg/kg/day. Also, females had higher incidences of lung cancer than the controls at doses of 7 mg/kg and higher. The EPA has classified bifenthrin as a class C carcinogen, a possible human carcinogen.

Organ Toxicity: Pyrethroids are poisons that affect the electrical impulses in nerves, over-stimulating nerve cells causing tremors and eventually causing paralysis.

BIFENTHRIN

For bifenthrin:

Page 13 of 17

AC Bithrin

Issue Date: **10/12/2021**Print Date: **13/02/2022**

Fate in Humans and Animals: Bifenthrin is absorbed through intact skin when applied topically. It undergoes similar modes of breakdown within animal systems as other pyrethroid insecticides. In mammals, bifenthrin is rapidly broken down and promptly excreted. Rats treated with 4 to 5 mg/kg, excreted 70 % in the urine and 20% in the faeces within 7 days. After 7 days, the remaining bifenthrin was found accumulated in tissues with high fat content such as the skin and fat in males and females and the ovaries of females. Bifenthrin is less toxic to warm-blooded animals, such as mammals, than to cold-blooded animals

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

for N-methyl-2-pyrrolidone (NMP):

Acute toxicity: In rats, NMP is absorbed rapidly after inhalation, oral, and dermal administration, distributed throughout the organism, and eliminated mainly by hydroxylation to polar compounds, which are excreted via urine. About 80% of the administered dose is excreted as NMP and NMP metabolites within 24 h. A probably dose-dependent yellow coloration of the urine in rodents is observed. The major metabolite is 5-hydroxy-*N*-methyl-2-pyrrolidone.

Studies in humans show comparable results. Dermal penetration through human skin has been shown to be very rapid. NMP is rapidly biotransformed by hydroxylation to 5-hydroxy-*N*-methyl-2-pyrrolidone, which is further oxidized to *N*-methylsuccinimide; this intermediate is further hydroxylated to 2-hydroxy-*N*-methylsuccinimide. These metabolites are all colourless. The excreted amounts of NMP metabolites in the urine after inhalation or oral intake represented about 100% and 65% of the administered doses, respectively.

NMP has a low potential for skin irritation and a moderate potential for eye irritation in rabbits. Repeated daily doses of 450 mg/kg body weight administered to the skin caused painful and severe haemorrhage and eschar formation in rabbits. These adverse effects have not been seen in workers occupationally exposed to pure NMP, but they have been observed after dermal exposure to NMP used in cleaning processes. No sensitisation potential has been observed.

In acute toxicity studies in rodents, NMP showed low toxicity. Uptake of oral, dermal, or inhaled acutely toxic doses causes functional disturbances and depressions in the central nervous system. Local irritation effects were observed in the respiratory tract when NMP was inhaled and in the pyloric and gastrointestinal tracts after oral administration. In humans, there was no irritative effect in the respiratory system after an 8-h exposure to 50 mg/m3.

Repeat dose toxicity: There is no clear toxicity profile of NMP after multiple administration. In a 28-day dietary study in rats, a compound-related decrease in body weight gain was observed in males at 1234 mg/kg body weight and in females at 2268 mg/kg body weight. Testicular degeneration and atrophy in males and thymic atrophy in females were observed at these dose levels. The no-observed-adverse-effect level (NOAEL) was 429 mg/kg body weight in males and 1548 mg/kg body weight in females. In a 28-day intubation study in rats, a dose-dependent increase in relative liver and kidney weights and a decrease in lymphocyte count in both sexes were observed at 1028 mg/kg body weight. The NOAEL in this study was 514 mg/kg body weight. In another rat study, daily dietary intake for 90 days caused decreased body weights at doses of 433 and 565 mg/kg body weight in males and females, respectively. There were also neurobehavioural effects at these dose levels. The NOAELs in males and females were 169 and 217 mg/kg body weight, respectively.

The toxicity profile after exposure to airborne NMP depends strongly on the ratio of vapour to aerosol and on the area of exposure (i.e., head-only or whole-body exposure). Because of higher skin absorption for the aerosol, uptake is higher in animals exposed to aerosol than in those exposed to vapour at similar concentrations. Studies in female rats exposed head only to 1000 mg/m3 showed only minor nasal irritation, but massive mortality and severe effects on major organs were observed when the females were whole-body exposed to the same concentration of coarse droplets at high relative humidity. Several studies in rats following repeated exposure to NMP at concentrations between 100 and 1000 mg/m3 have shown systemic toxicity effects at the lower dose levels. In most of the studies, the effects were not observed after a 4-week observation period.

In rats, exposure to 3000 mg NMP/m3 (head only) for 6 h/day, 5 days/week, for 13 weeks caused a decrease in body weight gain, an increase in erythrocytes, haemoglobin, haematocrit, and mean corpuscular volume, decreased absolute testis weight, and cell loss in the germinal epithelium of the testes. The NOAEL was 500 mg/m3.

There are no data in humans after repeated-dose exposure.

Carcinogenicity: NMP did not show any clear evidence for carcinogenicity in rats exposed to concentrations up to 400 mg/m3 in a long-term inhalation study.

Genotoxicity: The mutagenic potential of NMP is weak. Only a slight increase in the number of revertants was observed when tested in a *Salmonella* assay with base-pair substitution strains. NMP has been shown to induce aneuploidy in yeast *Saccharomyces cerevisiae* cells. No investigations regarding mutagenicity in humans were available.

Reproductive toxicity: In a two-generation reproduction study in rats, whole-body exposure of both males and females to 478 mg/m3 of NMP vapour for 6 h/day, 7 days/week, for a minimum of 100 days (pre-mating, mating, gestation, and lactation periods) resulted in a 7% decrease in fetal weight in the F1 offspring. A 4-11% transient, non-dose-dependent decrease was observed in the average pup weight at all exposure levels tested (41, 206, and 478 mg/m3).

Developmental toxicity: When NMP was administered dermally, developmental toxicity was registered in rats at 750 mg/kg body weight. The observed effects were increased preimplantation losses, decreased fetal weights, and delayed ossification. The NOAEL for both developmental effects and maternal toxicity (decreased body weight gain) was 237 mg/kg body weight. Inhalation studies in rats (whole-body exposure) demonstrated developmental toxicity as increased preimplantation loss without significant effect on implantation rate or number of live fetuses at 680 mg/m3 and behavioural developmental toxicity at 622 mg/m3. In an inhalation study (whole-body exposure), the NOAEL for maternal effects was 100 mg/m3, and the NOAEL for developmental effects was 360 mg/m3.

N-METHYL-2-PYRROLIDONE

Issue Date: 10/12/2021 Print Date: 13/02/2022

A tolerable inhalation concentration, 0.3 mg/m3, based on mortality and organ damage, is expected to be protective against any possible reproductive toxicity. Similarly, an oral tolerable intake of 0.6 mg/kg body weight per day, based on a 90-day study, is expected to provide adequate protection against possible reproductive effects. Because of non-existent data on the exposure of the general population and very limited information on occupational exposure, no meaningful risk characterisation can be performed

A substance (or part of a group of chemical substances) of very high concern (SVHC) - or product containing an SVHC: It is proposed that use within the European Union be subject to authorisation under the REACH Regulation.Indeed, listing of a substance as an SVHC by the European Chemicals Agency (ECHA) is the first step in the procedure for authorisation or restriction of use of a chemical.

The criteria are given in article 57 of the REACH Regulation. A substance may be proposed as an SVHC if it meets one or more of the following criteria:

- ▶ it is carcinogenic *;
- ▶ it is mutagenic *:
- ▶ it is toxic for reproduction *;
- it is persistent, bioaccumulative and toxic (PBT substances);
- it is very persistent and very bioaccumulative (vPvB substances);
- there is "scientific evidence of probable serious effects to human health or the environment which give rise to an equivalent level of concern"; such substances are identified on a case-by-case basis.
- * Collectively described as CMR substances

The "equivalent concern" criterion is significant because it is this classification which allows substances which are, for example, neurotoxic, endocrine-disrupting or otherwise present an unanticipated environmental health risk to be regulated under REACH] Simply because a substance meets one or more of the criteria does not necessarily mean that it will be proposed as an SVHC. Many such substances are already subject to restrictions on their use within the European Union, such as those in Annex XVII of the REACH Regulation SVHCs are substances for which the current restrictions on use (where these exist) might be insufficient. There are three priority groups for assessment:

- ► PBT substances and vPvB substances;
- substances which are widely dispersed during use;
- substances which are used in large quantities.

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	~	Reproductivity	✓
Serious Eye Damage/Irritation	~	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	✓

Legend:

- ★ Data either not available or does not fill the criteria for classification
- Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
AC Bithrin	Not Available	Not Available	Not Available	Not Available	Not Available
distillates, petroleum, light,	Endpoint	Test Duration (hr)	Species	Value	Source
hydrotreated	NOEC(ECx)	3072h	Fish	1mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
bifenthrin	NOEC(ECx)	96h	Fish	<0.001mg/L	4
	LC50	96h	Fish	<0.001mg/L	4
	EC50	48h	Crustacea	<0.002mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	504h	Crustacea	12.5mg/l	2
N-methyl-2-pyrrolidone	LC50	96h	Fish	464mg/l	1
	EC50	72h	Algae or other aquatic plant	s >500mg/l	1
	EC50	48h	Crustacea	ca.4897mg/l	1

•

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bifenthrin	HIGH	HIGH
N-methyl-2-pyrrolidone	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
distillates, petroleum, light, hydrotreated	LOW (BCF = 159)
bifenthrin	LOW (LogKOW = 8.1524)
N-methyl-2-pyrrolidone	LOW (BCF = 0.16)

Mobility in soil

Ingredient	Mobility
bifenthrin	LOW (KOC = 3228000)
N-methyl-2-pyrrolidone	LOW (KOC = 20.94)

SECTION 13 Disposal considerations

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Product / Packaging disposal

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ▶ Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

COMBUSTIBLE LIQUID COMBUSTIBLE LIQUID, regulated for storage purposes only **Marine Pollutant HAZCHEM**

Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

•	
Product name	Group
distillates, petroleum, light, hydrotreated	Not Available
bifenthrin	Not Available

Issue Date: 10/12/2021 Print Date: 13/02/2022

Product name	Group
N-methyl-2-pyrrolidone	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
distillates, petroleum, light, hydrotreated	Not Available
bifenthrin	Not Available
N-methyl-2-pyrrolidone	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

distillates, petroleum, light, hydrotreated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

bifenthrin is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7

N-methyl-2-pyrrolidone is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	No (bifenthrin)
Canada - DSL	No (bifenthrin)
Canada - NDSL	No (distillates, petroleum, light, hydrotreated; bifenthrin; N-methyl-2-pyrrolidone)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (bifenthrin)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	No (bifenthrin)
USA - TSCA	No (bifenthrin)
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	No (bifenthrin)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

Issue Date: **10/12/2021**Print Date: **13/02/2022**

SECTION 16 Other information

Revision Date	10/12/2021
Initial Date	03/04/2009

SDS Version Summary

Version	Date of Update	Sections Updated
6.1	15/04/2021	Classification change due to full database hazard calculation/update.
7.1	10/12/2021	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

 ${\sf PC-STEL} : {\sf Permissible \ Concentration-Short \ Term \ Exposure \ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.