Axichem Pty Ltd

Chemwatch: **7920-98** Version No: **2.1**

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **20/11/2024**Print Date: **21/11/2024**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	AC Scrub-Up		
Chemical Name	nt Applicable		
Synonyms	ot Available		
Proper shipping name	PIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains 3-(hexyloxy)propan-1-amine, aminopyralid and opyr, butoxyethanol ester)		
Chemical formula	Not Applicable		
Other means of identification	Not Available		

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	For the control of a range of environmental and noxious woody and herbaceous weeds as specified in the Directions for Use.
	Use according to manufacturer's directions.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Axichem Pty Ltd	
Address	Palings Court Nerang QLD 4211 Australia	
Telephone	5596 1736	
Fax	Not Available	
Website	www.axichem.com.au	
Email	msds@axichem.com.au	

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE (24/7)	
Emergency telephone number(s)	+61 1800 951 288	
Other emergency telephone number(s)	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

COMBUSTIBLE LIQUID, regulated for storage purposes only

Poisons Schedule	S6
Classification ^[1]	Flammable Liquids Category 4, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Reproductive Toxicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

AC Scrub-Up

Issue Date: 20/11/2024 Print Date: 21/11/2024

Signal word	Danger

Hazard statement(s)

H227	ombustible liquid.	
H302	rmful if swallowed.	
H315	ses skin irritation.	
H317	cause an allergic skin reaction.	
H318	Causes serious eye damage.	
H361fd	Suspected of damaging fertility. Suspected of damaging the unborn child.	
H373	May cause damage to organs through prolonged or repeated exposure.	
H410	Very toxic to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P260	Oo not breathe mist/vapours/spray.	
P280	/ear protective gloves, protective clothing, eye protection and face protection.	
P264	Wash all exposed external body areas thoroughly after handling.	
P270	Do not eat, drink or smoke when using this product.	
P273	Avoid release to the environment.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P308+P313	IF exposed or concerned: Get medical advice/ attention.		
P310	mmediately call a POISON CENTER/doctor/physician/first aider.		
P370+P378	case of fire: Use alcohol resistant foam or normal protein foam to extinguish.		
P302+P352	ON SKIN: Wash with plenty of water.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		
P391	Collect spillage.		
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.		
P330	Rinse mouth.		

Precautionary statement(s) Storage

P403	Store in a well-ventilated place.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64700-56-7	36.35	triclopyr, butoxyethanol ester
1918-02-1	8.71	picloram
150114-71-9	0.7	<u>aminopyralid</u>
37251-69-7	<10	nonylphenol, ethoxylated, propoxylated
16728-61-3	<10	3-(hexyloxy)propan-1-amine
Not Available	balance	Ingredients determined not to be hazardous

Chemwatch: **7920-98** Page **3** of **20**Version No: **2.1**

AC Scrub-Up

Issue Date: 20/11/2024
Print Date: 21/11/2024

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eves: ▶ Immediately hold eyelids apart and flush the eye continuously with running water. ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally **Eye Contact** lifting the upper and lower lids. ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Immediately remove all contaminated clothing, including footwear. **Skin Contact** Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation. If fumes, aerosols or combustion products are inhaled remove from contaminated area. Inhalation Other measures are usually unnecessary. ▶ IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the Ingestion SDS Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: ▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

._____

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Treat symptomatically.

SECTION 5 Firefighting measures

AC Scrub-Up

Issue Date: 20/11/2024 Print Date: 21/11/2024

Extinguishing media

- Foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire	Incompatibility
------	-----------------

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) hydrogen chloride phosgene nitrogen oxides (NOx) other pyrolysis products typical of burning organic material.
HAZCHEM	•3Z

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

	Environmental hazard - contain spillage.
	▶ Clean up all spills immediately.
	 Avoid breathing vapours and contact with skin and eyes.
Minor Spills	▶ Control personal contact with the substance, by using protective equipment.
	▶ Contain and absorb spill with sand, earth, inert material or vermiculite.
	▶ Wipe up.
	▶ Place in a suitable, labelled container for waste disposal.
	Environmental hazard - contain spillage.
	Moderate hazard.
	▶ Clear area of personnel and move upwind.
	▶ Alert Fire Brigade and tell them location and nature of hazard.
	Wear breathing apparatus plus protective gloves.
	▶ Prevent, by any means available, spillage from entering drains or water course.
	▶ No smoking, naked lights or ignition sources.
Major Spills	▶ Increase ventilation.
	▶ Stop leak if safe to do so.
	▶ Contain spill with sand, earth or vermiculite.
	▶ Collect recoverable product into labelled containers for recycling.
	▶ Absorb remaining product with sand, earth or vermiculite.
	▶ Collect solid residues and seal in labelled drums for disposal.
	▶ Wash area and prevent runoff into drains.
	▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

Chemwatch: 7920-98 Page 5 of 20

Issue Date: 20/11/2024 Version No: 2.1 Print Date: 21/11/2024 AC Scrub-Up

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ▶ When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other information

- ▶ Store in original containers.
- Keep containers securely sealed.
- ▶ Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

Avoid strong bases. Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	picloram	Picloram	10 mg/m3	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
triclopyr, butoxyethanol ester	Not Available	Not Available
picloram	Not Available	Not Available
aminopyralid	Not Available	Not Available
nonylphenol, ethoxylated, propoxylated	Not Available	Not Available
3-(hexyloxy)propan-1-amine	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
triclopyr, butoxyethanol ester	E	≤ 0.01 mg/m³
aminopyralid	E	≤ 0.01 mg/m³
nonylphenol, ethoxylated, propoxylated	E ≤ 0.1 ppm	
3-(hexyloxy)propan-1-amine	E ≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's	

potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

MATERIAL DATA

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Page 6 of 20 Issue Date: 20/11/2024 Version No. 2.1 Print Date: 21/11/2024

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by 550 working activities

26-В

As "A" for 50-90% of persons being distracted 550

- C 1-26 As "A" for less than 50% of persons being distracted
- 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- F <0.18 As "D" for less than 10% of persons aware of being tested

For picloram:

In view of the low irritancy potential of picloram it can be assumed the toxicity due to inhalation exposure will be similar to that due to ingestion. Picloram has low acute and chronic toxicity with hepatic and renal changes recorded, in rats, at doses of 225 mg/kg/day.

The carcinogenic potential in rats remains controversial.

Exposure at or below the TLV-TWA is thought to minimise the risk of systemic effects involving the liver and kidney.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air)	0.25-0.5 m/s (50- 100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500 f/min)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood - local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eve and face protection

- Safety glasses with side shields.
- ▶ Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]

Chemwatch: 7920-98 Page 7 of 20 Issue Date: 20/11/2024 Version No. 2.1 Print Date: 21/11/2024 AC Scrub-Up

• Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. See Hand protection below

Skin protection

- ▶ Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material.
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- \cdot When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161,10,1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

· Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

· Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic

AC Scrub-Up

Issue Date: **20/11/2024**Print Date: **21/11/2024**

compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Appearance	Brown liquid.		
Physical state	Liquid	Relative density (Water = 1)	1.148
Odour	Characteristic	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	200	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	82	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Issue Date: **20/11/2024**Print Date: **21/11/2024**

	Nonionic surfactants may produce localised irritation of the oral or gastrointestinal mucosa and induce vomiting and mild diarrhoea.		
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.		
Еуе	When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Some nonionic surfactants may produce a localised anaesthetic effect on the cornea; this may effectively eliminate the warning discomfort produced by other substances and lead to corneal injury. Irritant effects range from minimal to severe dependent on the nature of the surfactant, its concentration and the duration of contact. Pain and corneal damage represent the most severe manifestation of irritation.		
Chronic	discomfort produced by other substances and lead to corneal injury. Irritant effects range from minimal to severe dependent on the nature of the surfactant, its concentration and the duration of contact. Pain and corneal damage represent the most severe		
	TOXICITY	IRRITATION	
AC Scrub-Up	Not Available	Not Available	
	TOXICITY	IRRITATION	
	dermal (mammal) LD50: >2000 mg/kg ^[2]	Not Available	
triclopyr, butoxyethanol ester		TOOT VARIABLE	
ester	Inhalation(Mammal) LC50; >4.8 mg/L4h ^[2]		

Oral (Rat) LD50: 2140 mg/kg^[2]

AC Scrub-Up

Issue Date: 20/11/2024
Print Date: 21/11/2024

picloram	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >4000 mg/kg ^[2]	Not Available	
	Oral (Mouse) LD50; 1061 mg/kg ^[2]		
	TOXICITY	IRRITATION	
aminopyralid	dermal (rat) LD50: >5000 mg/kg ^[1]	Not Available	
	Inhalation (Rat) LC50: >5.5 mg/L4h ^[2]		
	Oral (Rat) LD50: >5000 mg/kg ^[1]		
nonylphenol, ethoxylated,	TOXICITY	IRRITATION	
propoxylated	Oral (Rat) LD50: 1990 mg/kg ^[2]	Not Available	
3-(hexyloxy)propan-1- amine	TOXICITY	IRRITATION	
	Not Available	Not Available	
Legend:	Value obtained from Europe ECHA Registered Su	bstances - Acute toxicity 2. Value obtained from manufacturer's SDS.	
_	Unless otherwise specified data extracted from RTE	CS - Register of Toxic Effect of chemical Substances	

TRICLOPYR, BUTOXYETHANOL ESTER

Dermal (None) rabbit, male: None > 4000 mg/kg*[Dow]* Dermal (None) rabbit, female: None 2315 mg/kg*

PICLORAM

Toxicity class WHO Table 5; EPA IV * ADI 0.07 mg/kg/day NOEL (2 y) for rats 7 mg/kg/day Carcinogenic by RTECS criteria Endocrine tumours, leukopenia recorded.

[* The Pesticides Manual, Incorporating The Agrochemicals Handbook, 10th Edition, Editor Clive Tomlin, 1994, British Crop Protection Council]

Acute toxicity data indicate that aminopyralid has low toxicity via oral, dermal and inhalation routes of exposure. The technical aminopyralid product is classified in toxicity category I [DANGER] based on an acute eye irritation study conducted with the free acid. In a rat developmental study the NOAEL for maternal and developmental toxicity was equal to or greater than 1,000 mg/kg/day [HDT]. In a developmental toxicity study in rabbits with aminopyralid, the NOAEL for maternal toxicity was 250

mg/kg/day and the developmental NOAEL was equal or greater than 500 mg/kg/day. Maternal toxicity was observed at 500 and 750 mg/kg/day [HDT] in the form of decreased body weights and clinical observations of uncoordinated gait. Ulcers and erosions of the glandular mucosa of the stomach were observed in the 500 and 750 mg/kg/day dose groups. Similar toxic effects were also observed in a developmental study in rabbits with Milestone, the formulated triisopropanolamine (TIPA) salt of aminopyralid. Developmental toxicity could not be determined in aminopyralid rabbit study since the 750 mg/kg/day group was removed from the study due to the severity of the clinical signs (body weight changes, decreased food consumption and a decreased amount of feces). However, in the rabbit developmental study with Milestone, developmental toxicity was demonstrated by a decrease in foetal body weights at 520 mg acid equivalents (ae)/kg/day. In a 2-generation reproduction study in rats, there was no evidence of parental, reproductive, or offspring toxicity observed after exposure to aminopyralid up to 1000 mg/kg/day [HDT]. The developmental toxicity studies and the 2-generation reproduction study did not exhibit quantitative or qualitative susceptibility. There were no systemic toxic effects observed at 1000 mg/kg/day [HDT] in a 28-day dermal toxicity study in rats with aminopyralid. However, dermal toxicity was indicated by slight epidermal hyperplasia in males at the HDT. The database on aminopyralid indicates that the stomach, ileum and cecum are targets for this compound. In a 90-day toxicity study in dogs the NOAEL was 282 mg/kg/day for males and 232 mg/kg/day for females based on slight diffuse hyperplasia and hypertrophy of the mucosal epithelium of the stomach at 1070 mg/kg/day in males and 929 mg/kg/day in females. In the 1-year chronic toxicity study in dogs, the NOAEL was 99 mg/kg/day for males and 93 mg/kg/day for females based on thickening of the stomach, slight

AMINOPYRALID

aminopyralid indicates that the stomach, ileum and cecum are targets for this compound. In a 90-day toxicity study in dogs the NOAEL was 282 mg/kg/day for males and 232 mg/kg/day for females based on slight diffuse hyperplasia and hypertrophy of the mucosal epithelium of the stomach at 1070 mg/kg/day in males and 929 mg/kg/day in females. In the 1-year chronic toxicity study in dogs, the NOAEL was 99 mg/kg/day for males and 93 mg/kg/day for females based on thickening of the stomach, slight lymphoid hyperplasia of the gastric mucosa, and slight chronic mucosal inflammation at the HDT. In a 90-day mouse dietary study, no toxicity was observed at 1000 mg/kg/day [HDT]. In a 90-day rat feeding study the NOAEL was 1000 mg/kg/day [HDT] for females and 500 mg/kg/day for males based on hyperplasia of the mucosal epithelium of the ileum and the cecum at 1000 mg/kg/day [HDT]. In the mouse chronic feeding study the NOAEL was 1000 mg/kg/day [HDT] for males and 250 mg/kg/day for females. In the rat chronic feeding study the NOAEL was 50 mg/kg/day based on cecal enlargement, slight mucosal hyperplasia (males) and slightly decreased body weights at 500 mg/kg/day. Aminopyralid has been classified as "not likely" to be carcinogenic to humans. No increases in any tumors were found in carcinogenicity studies in rats and mice. In a metabolism study in rats, aminopyralid was rapidly absorbed, distributed, and excreted following oral administration. Tissue distribution and bioaccumulation were minimal; 0.73% of administered dose [AD] was recovered in tissues after 7 days for all dosing groups. The highest levels of radioactivity were found in the skin and carcass. Aminopyralid was excreted unchanged, indicating an absence of metabolism. The AD was recovered as parent compound in 100% of the feces and = 96% of the urine. Three unknown components found in urine (= 4 %) were also detected in similar quantities in dose formulations, suggesting that they were trace impurities. Based on aminopyralids low toxicity, an acute Reference Dose (RfD) for the general population is not required. The chronic RfD for aminopyralid is 0.5 mg/kg/day. This value is based on the NOAEL of 50 mg/kg/day in the rat combined chronic toxicity/carcinogenicity study with a 100-fold uncertainty factor to account for interspecies extrapolation (10X) and intraspecies variability (10X). An additional safety factor to protect infants and children is not required, due to the toxicity properties of the material and the conservative nature of the exposure estimates USA EPA Pesticide Fact Sheet, 2005

NONYLPHENOL, ETHOXYLATED, PROPOXYLATED

For nonylphenol and its compounds:

Alkylphenols like nonylphenol and bisphenol A have estrogenic effects in the body. They are known as xenoestrogens. Estrogenic substances and other endocrine disruptors are compounds that have hormone-like effects in both wildlife and humans. Xenoestrogens usually function by binding to estrogen receptors and acting competitively against natural estrogens. Nonylphenol has been found to act as an agonist of GPER (G protein-coupled estrogen receptor),. Nonylphenol has been shown to mimic the natural hormone 17beta-estradiol, and it competes with the endogeous hormone for binding with the estrogen receptors ERalpha and ERbeta.

Page 11 of 20 Issue Date: 20/11/2024

AC Scrub-Up Print Date: 21/11/2024

Effects in pregnant women.

Subcutaneous injections of nonylphenol in late pregnancy causes the expression of certain placental and uterine proteins, namely CaBP-9k, which suggest it can be transferred through the placenta to the fetus. It has also been shown to have a higher potency on the first trimester placenta than the endogenous estrogen 17beta-estradiol. In addition, early prenatal exposure to low doses of nonylphenol cause an increase in apoptosis (programmed cell death) in placental cells. These "low doses" ranged from 10-13-10-9 M, which is lower than what is generally found in the environment.

Nonylphenol has also been shown to affect cytokine signaling molecule secretions in the human placenta. In vitro cell cultures of human placenta during the first trimester were treated with nonylphenol, which increase the secretion of cytokines including interferon gamma, interleukin 4, and interleukin 10, and reduced the secretion of tumor necrosis factor alpha. This unbalanced cytokine profile at this part of pregnancy has been documented to result in implantation failure, pregnancy loss, and other complications.

Effects on metabolism

Nonylphenol has been shown to act as an obesity enhancing chemical or obesogen, though it has paradoxically been shown to have anti-obesity properties. Growing embryos and newborns are particularly vulnerable when exposed to nonylphenol because low-doses can disrupt sensitive processes that occur during these important developmental periods. Prenatal and perinatal exposure to nonylphenol has been linked with developmental abnormalities in adipose tissue and therefore in metabolic hormone synthesis and release. Specifically, by acting as an estrogen mimic, nonylphenol has generally been shown to interfere with hypothalamic appetite control. The hypothalamus responds to the hormone leptin, which signals the feeling of fullness after eating, and nonylphenol has been shown to both increase and decrease eating behavior by interfering with leptin signaling in the midbrain. Nonylphenol has been shown mimic the action of leptin on neuropeptide Y and anorectic POMC neurons, which has an anti-obesity effect by decreasing eating behavior. This was seen when estrogen or estrogen mimics were injected into the ventromedial hypothalamus. On the other hand, nonylphenol has been shown to increase food intake and have obesity enhancing properties by lowering the expression of these anorexigenic neurons in the brain. Additionally, nonylphenol affects the expression of ghrelin: an enzyme produced by the stomach that stimulates appetite. Ghrelin expression is positively regulated by estrogen signaling in the stomach, and it is also important in guiding the differentiation of stem cells into adipocytes (fat cells). Thus, acting as an estrogen mimic, prenatal and perinatal exposure to nonylphenol has been shown to increase appetite and encourage the body to store fat later in life. Finally, long-term exposure to nonylphenol has been shown to affect insulin signaling in the liver of adult male rats.

Cancer

Nonylphenol exposure has also been associated with breast cancer. It has been shown to promote the proliferation of breast cancer cells, due to its agonistic activity on ERalpha (estrogen receptor alpha) in estrogen-dependent and estrogen-independent breast cancer cells. Some argue that nonylphenol's suggested estrogenic effect coupled with its widespread human exposure could potentially influence hormone-dependent breast cancer disease

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations.

Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology

https://doi.org/10.5487/TR.2015.31.2.105

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, piloerection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin,

Page 12 of 20 Issue Date: 20/11/2024
Print Date: 21/11/2024

carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose allergic contact dermatitis (ACD) to these compounds by patch testing

Overall, alcohol alkoxylates (AAs) are not expected to be systemically toxic, although some short chain ethylene glycol ethers, e.g. methyl and ethyl homologues are of concern for a range of adverse health effects. They include skin and eye irritation, liver and kidney damage, bone marrow and central nervous system (CNS) depression, testicular atrophy, developmental toxicity, and immunotoxicity. For higher propyl and butyl homologues, the toxicity involves haemolysis (anaemia) with secondary effects relating to haemosiderin accumulation in the spleen, liver and kidney, and compensatory haematopoiesis in the bone marrow. Systemic toxicity was shown to decrease with increasing alkyl chain lengths and/or alkoxylation degrees (ECETOC, 2005; US EPA, 2010). The chemicals ethylene glycol hexyl ether (with a longer alkyl chain length, CAS No. 112-25-4) and diethylene glycol butyl ether (with a higher ethoxylation degree, CAS No. 112-34-5) have no evidence of systemic effects including haemolysis. Commercially available AAs are mixtures of homologues of varying carbon chain lengths and it is possible that some of the chemicals with an average alkyl chain length C >=6 may also contain shorter alkyl chains C <6. It is not practical to quantify the proportion of shorter C <6 chain lengths present in such chemicals, or these shorter chain lengths may not be present at all. The available data suggest a lack of systemic toxicity for the AE chemicals with potential short alkyl chain presence (NICNASa); therefore, the toxicity of the chemicals in this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41

>20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin).

AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a

Page 13 of 20 Issue Date: 20/11/2024 Version No. 2.1 Print Date: 21/11/2024

decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the

of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected in vivo. The principal metabolite of TGME is believed to be 2-[2-(2-methoxyethoxy)ethoxy] acetic acid . Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers

The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death.

Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity

In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation . Due to a high incidence of similar spontaneous changes

in normal New Zealand White rabbits, the testicular effects were considered not to be related to treatment. Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable.

A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day . In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats

In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statisticallysignificant changes in relative liver weight were observed at 1.200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000

performed on category members lessen the concern for carcinogenicity.

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1.000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain.

Nonylphenol was studied for oral toxicity in rats in a 28-day repeat dose toxicity test at doses of 0, 4, 15, 60 and 250 mg/kg/day. Changes suggesting renal dysfunction were mainly noted in both sexes given 250 mg/kg. Liver weights were increased in males given 60 mg/kg and in both sexes given 250 mg/kg group. Histopathologically, hypertrophy of the centrilobular hepatocytes was noted in both sexes given 250 mg/kg. Kidney weights were increased in males given 250 mg/kg and macroscopically, disseminated white spots, enlargement and pelvic dilatation were noted in females given 250 mg/kg. Histopathologically, the following lesions were noted in the 250 mg/kg group: basophilic change of the proximal tubules in both sexes, single cell necrosis of the proximal tubules, inflammatory cell infiltration in the interstitium and casts in females, basophilic change and dilatation of the collecting tubules in both sexes, simple hyperplasia of the pelvic mucosa and pelvic dilatation in females. In the urinary bladder, simple hyperplasia was noted in both sexes given 250 mg/kg. In the caecum, macroscopic dilatation was noted in both sexes given 250 mg/kg. Almost all changes except those in the kidney disappeared after a 14-day recovery period. The NOELs for males and females are considered to be 15 mg/kg/day and 60 mg/kg/day, respectively, under the conditions of the present

Nonylphenol was not mutagenic to Salmonella typhimurium, TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA, with or without an exogeneous metabolic activation system.

Nonylphenol induced neither structural chromosomal aberrations nor polyploidy in CHL/IU cells, in the absence or presence of an exogenous metabolic activation system.

Issue Date: 20/11/2024 Version No. 2.1 Print Date: 21/11/2024

> While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects.

- Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis.
- ▶ Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient.

Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion.

Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs.

Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability

Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing. difficulty in breathing, and chest pains.

Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies.

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease.

3-(HEXYLOXY)PROPAN-1-AMINE

Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema.

Skin Contact:

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient.

Eve Contact:

Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations.

Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness.

(Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling.

The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation

Ingestion:

The oral toxicity of amine catalysts varies from moderately to very toxic.

Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death.

Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 **Alliance for Polyurethanes Industry**

AC Scrub-Up & TRICLOPYR, BUTOXYETHANOL ESTER & 3-(HEXYLOXY)PROPAN-1-AMINE

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

AC Scrub-Up & NONYLPHENOL. ETHOXYLATED, PROPOXYLATED & 3-(HEXYLOXY)PROPAN-1-AMINE

No significant acute toxicological data identified in literature search.

AC Scrub-Up & PICLORAM

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Acute toxicity: Picloram is slightly to practically nontoxic via ingestion, with reported oral LD50 values of greater than 5000 mg/kg to 8200 mg/kg in rats, 2000 to 4000 mg/kg in mice, and approximately 2000 mg/kg in rabbits . The reported dermal LD50 in rabbits is greater than 4000 mg/kg, a level which produced no mortality or toxic signs . This indicates slight toxicity via the

Page 15 of 20 Issue Date: 20/11/2024 Version No. 2.1 Print Date: 21/11/2024

> dermal route as well. Technical picloram is reported to cause no skin and moderate eye irritation in the rabbit, and to cause no skin sensitisation in the guinea pig. Some formulations have caused mild or slight skin irritation and skin sensitization in test animals . The technical grade is moderately toxic by inhalation, with a reported 4-hour inhalation LC50 of greater than 0.35 mg/L . Formulated products may show a lesser toxicity via this route . There is no documented history of human intoxication by picloram, so symptoms of acute exposure are difficult to characterise.

> Chronic toxicity: Male mice receiving picloram at dietary doses of 1000 to 2000 mg/kg/day over 32 days showed no clinical signs of toxicity nor changes in blood chemistry, but females did show decreased body weight and increased liver weights . Liver effects were also seen in rats at very high doses of 3000 mg/kg/day over an exposure period of 90 days, and above 225 mg/kg/day for 90 days. Dogs, sheep, and beef cattle fed low levels of picloram for a month experienced no toxic effects. The ester and triisopropanolamine salt showed low toxicity in animal tests . Picloram may show additive effects if mixed with other herbicides such as 2,4-D.

> Reproductive effects: In multi-generational studies, pregnant rats exposed during critical periods of gestation to doses of about 180 mg/kg/day of picloram showed no changes in fertility . The fertility of pregnant mice fed 15 mg/kg/day for 4 days before and 14 days after mating was not adversely affected . Other studies showed no effects on fertility or fecundity in rats at doses as high as 1000 mg/kg/day. Picloram does not appear to cause reproductive toxicity.

> Teratogenic effects: No teratogenic effects were seen in the offspring of pregnant rats exposed during gestation to 400 mg/kg/day of the acid or potassium salt, or to 1000 mg/kg/day of the ester or other salt [58]. At 2000 mg/kg/day, maternal toxicity was noted but did not induce malformation in the pups . It appears that picloram is not teratogenic.

Mutagenic effects: One test has shown that picloram is mutagenic (to the bacterium Saccharomyces cerevisiae) and another test has shown that it is not mutagenic (Ames test) . In tests for unscheduled DNA synthesis and structural chromosome aberrations, the results were also negative . These data suggest that picloram is either nonmutagenic or weakly mutagenic. Carcinogenic effects: Mice fed average doses of 18 mg/kg/day or 30 mg/kg/day for 80 weeks and observed for another 10 weeks did not display any carcinogenic effects . Male rats fed 17.5 or about 40 mg/kg/day for 80 weeks and observed for 33 weeks showed no carcinogenicity, but females developed benign liver tumor nodules . Other tests have indicated an increased incidence of cancer among animals treated with picloram, but these data are difficult to interpret due to possible interference of hexachlorobenzene contaminants. These data suggest that picloram is noncarcinogenic or weakly carcinogenic.

Organ toxicity: Animal studies show the target organs for picloram to be the liver and kidneys.

Fate in humans and animals: Picloram was rapidly absorbed through the gastrointestinal tract in studies using human volunteers, and was excreted unchanged in the urine . Half of the product was excreted within a day or so. Skin absorption is minimal . Rats showed similar results, with administered doses excreted virtually unchanged in urine and faeces within 48 hours . Picloram does not accumulate in fat. No measurable residues were found in milk from cows fed small amounts of the herbicide in their diets At higher levels of exposure, milk levels of picloram were low (0.05 to 0.29 ppm) and declined rapidly upon withdrawal of picloram from the diet.

PICLORAM & **AMINOPYRALID &** NONYLPHENOL, ETHOXYLATED, PROPOXYLATED & 3-(HEXYLOXY)PROPAN-1-AMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a nonallergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	~
Mutagenicity	×	Aspiration Hazard	×

Leaend: ★ - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

AC Scrub-Up	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available		Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	600h	Crustacea	0.001- 0.003mg/L	4
triclopyr, butoxyethanol ester	LC50	96h	Fish	0.2- 0.56mg/L	4
	EC50	48h	Crustacea	0.27- 0.41mg/L	4
picloram	Endpoint	Test Duration (hr)	Species	Value	Source

Continued...

AC Scrub-Up

Issue Date: **20/11/2024**Print Date: **21/11/2024**

	EC50	96h	Algae or other aquatic plants	18.4- 25.1mg/l	4
	NOEC(ECx)	1440h	Fish	0.55mg/L	5
	EC50	48h	Crustacea	59- 97mg/l	4
	LC50	96h	Fish	0.7- 2.5mg/l	4
	Endpoint	Test Duration (hr)	Species	Value	Source
aminopyralid	EC50	96h	Algae or other aquatic plants	18.92- 135.88mg/L	4
	EC50	72h	Algae or other aquatic plants	21mg/l	2
	NOEC(ECx)	336h	Algae or other aquatic plants	0.064mg/L	2
	EC50	48h	Crustacea	>100mg/l	2
	LC50	96h	Fish	>100mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
nonylphenol, ethoxylated, propoxylated	Not Available	Not Available	Not Available	Not Available	Not Available
0 (1111	Endpoint	Test Duration (hr)	Species	Value	Source
3-(hexyloxy)propan-1- amine	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	4. US EPA, Ed		ECHA Registered Substances - Ecotoxicologi a 5. ECETOC Aquatic Hazard Assessment D ntration Data 8. Vendor Data	•	

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
triclopyr, butoxyethanol ester	HIGH	HIGH
picloram	HIGH	HIGH
3-(hexyloxy)propan-1-amine	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation	
triclopyr, butoxyethanol ester	MEDIUM (LogKOW = 4.4529)	
picloram	LOW (LogKOW = 1.3599)	
3-(hexyloxy)propan-1-amine	LOW (LogKOW = 2.0337)	

Mobility in soil

Ingredient	Mobility
triclopyr, butoxyethanol ester	LOW (Log KOC = 557.3)
picloram	LOW (Log KOC = 18.1)
3-(hexyloxy)propan-1-amine	LOW (Log KOC = 130)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

AC Scrub-Up

Issue Date: **20/11/2024**Print Date: **21/11/2024**

- Reduction
- Reuse
- Recycling
- ▶ Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ${\color{red} \bullet} \ \ {\sf Recycle} \ {\sf wherever} \ {\sf possible} \ {\sf or} \ {\sf consult} \ {\sf manufacturer} \ {\sf for} \ {\sf recycling} \ {\sf options}.$
- ▶ Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

•3Z

Land transport (ADG)

14.1. UN number or ID number	3082				
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains 3-(hexyloxy)propan-1-amine, aminopyralid and triclopyr, butoxyethanol ester)				
14.3. Transport hazard class(es)	Class Subsidiary Hazard				
14.4. Packing group	III				
14.5. Environmental hazard	Environmentally hazardous				
14.6. Special precautions for user	Special provisions 274 331 335 375 AU01 Limited quantity 5 L				

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in;

- (a) packagings;
- (b) IBCs; or
- (c) any other receptacle not exceeding 500 kg(L).
- Australian Special Provisions (SP AU01) ADG Code 7th Ed.

Air transport (ICAO-IATA / DGR)

14.1. UN number	3082				
14.2. UN proper shipping name	Environmentally hazardous substance, liquid, n.o.s. (contains 3-(hexyloxy)propan-1-amine, aminopyralid and triclopyr, butoxyethanol ester)				
14.3. Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subsidiary Hazard ERG Code	ICAO / IATA Subsidiary Hazard Not Applicable			
14.4. Packing group	III				
14.5. Environmental hazard	Environmentally hazardous				
14.6. Special precautions for user	Special provisions A97 A158 A197 A215		A97 A158 A197 A215		

Cargo Only Packing Instructions	964
Cargo Only Maximum Qty / Pack	450 L
Passenger and Cargo Packing Instructions	964
Passenger and Cargo Maximum Qty / Pack	450 L
Passenger and Cargo Limited Quantity Packing Instructions	Y964
Passenger and Cargo Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3082		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains 3-(hexyloxy)propan-1-amine, aminopyralid and triclopyr, butoxyethanol ester)		
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subsidiary Hazard Not Applicable		
14.4. Packing group	III		
14.5 Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	EMS Number F-A , S-F Special provisions 274 335 969 Limited Quantities 5 L		

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
triclopyr, butoxyethanol ester	Not Available
picloram	Not Available
aminopyralid	Not Available
nonylphenol, ethoxylated, propoxylated	Not Available
3-(hexyloxy)propan-1-amine	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
triclopyr, butoxyethanol ester	Not Available
picloram	Not Available
aminopyralid	Not Available
nonylphenol, ethoxylated, propoxylated	Not Available
3-(hexyloxy)propan-1-amine	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

triclopyr, butoxyethanol ester is found on the following regulatory lists

Australia Chemicals with non-industrial uses removed from the Australian Inventory of Chemical Substances (old Inventory)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

picloram is found on the following regulatory lists

Australia Chemicals with non-industrial uses removed from the Australian Inventory of Chemical Substances (old Inventory)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

aminopyralid is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Issue Date: 20/11/2024

Print Date: 21/11/2024

Issue Date: **20/11/2024**Print Date: **21/11/2024**

nonylphenol, ethoxylated, propoxylated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

3-(hexyloxy)propan-1-amine is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	No (aminopyralid)
Canada - DSL	No (triclopyr, butoxyethanol ester; picloram; aminopyralid; 3-(hexyloxy)propan-1-amine)
Canada - NDSL	No (triclopyr, butoxyethanol ester; aminopyralid; nonylphenol, ethoxylated, propoxylated; 3-(hexyloxy)propan-1-amine)
China - IECSC	No (triclopyr, butoxyethanol ester; picloram; aminopyralid; 3-(hexyloxy)propan-1-amine)
Europe - EINEC / ELINCS / NLP	No (aminopyralid; nonylphenol, ethoxylated, propoxylated)
Japan - ENCS	No (triclopyr, butoxyethanol ester; picloram; aminopyralid; nonylphenol, ethoxylated, propoxylated)
Korea - KECI	No (aminopyralid; 3-(hexyloxy)propan-1-amine)
New Zealand - NZIoC	Yes
Philippines - PICCS	No (triclopyr, butoxyethanol ester; aminopyralid; 3-(hexyloxy)propan-1-amine)
USA - TSCA	TSCA Inventory 'Active' substance(s) (picloram; nonylphenol, ethoxylated, propoxylated); No (triclopyr, butoxyethanol ester; aminopyralid; 3-(hexyloxy)propan-1-amine)
Taiwan - TCSI	No (aminopyralid; 3-(hexyloxy)propan-1-amine)
Mexico - INSQ	No (triclopyr, butoxyethanol ester; aminopyralid; nonylphenol, ethoxylated, propoxylated; 3-(hexyloxy)propan-1-amine)
Vietnam - NCI	No (3-(hexyloxy)propan-1-amine)
Russia - FBEPH	No (triclopyr, butoxyethanol ester; picloram; aminopyralid; nonylphenol, ethoxylated, propoxylated; 3-(hexyloxy)propan-1-amine
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	20/11/2024
Initial Date	20/11/2024

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ► ES: Exposure Standard
- OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ► LOAEL: Lowest Observed Adverse Effect Level
- ► TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- DNEL: Derived No-Effect Level

Chemwatch: 7920-98 Page 20 of 20 Version No: 2.1

AC Scrub-Up

Print Date: 21/11/2024

- ▶ PNEC: Predicted no-effect concentration
- ▶ MARPOL: International Convention for the Prevention of Pollution from Ships
- ▶ IMSBC: International Maritime Solid Bulk Cargoes Code
- IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ▶ TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ▶ NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Issue Date: 20/11/2024